复分析讨论班第八次讨论

ZiJie Wen

Department of Mathematics, Sustech

2023.2.1

- 1 Removable singularity
- 2 Essential singularity
- 3 meromorphic function
- 4 Riemann Sphere

- 1 Removable singularity
- 2 Essential singularity
- 3 meromorphic function
- 4 Riemann Sphere

Theorem 3.1 (Riemann's theorem on removable singularity)

Suppose that f is holomorphic in an open set Ω except possibly at a point z_0 in Ω . If f is bounded on $\Omega - \{z_0\}$, then z_0 is a removable singularity.

4 / 15

Removable singularity

Corollary 3.2

Suppose that f has an isolated singularity at the point z_0 . Then z_0 is a pole of f if and only if $|f(z)| \to \infty$ as $z \to z_0$.

Isolated singularities

- Removable singularities (f bounded near z_0)
- Pole singularities $(|f(z)| \to \infty \text{ bounded near } z_0)$
- Essential singularities

5 / 15

- 2 Essential singularity
- 3 meromorphic function
- 4 Riemann Sphere

Not Removable and Not Pole

Theorem 3.3 (Casorati-Weierstrass)

Suppose f is holmorphic in the punctured disc $D_r(z_0) - \{z_0\}$ and has an essential singularity at z_0 . Then, the image of $D_r(z_0) - \{z_0\}$ under f is dense in the complex plane.

- 1 Removable singularity
- 2 Essential singularity
- 3 meromorphic function
- 4 Riemann Sphere

Def. meromorphic

A function f on a open set Ω is **meromorphic** if there exist a sequence of point $\{z_0, z_1, z_2, \dots\}$ that has no limit points on Ω , and such that

- (i) the function f is holomorphic in $\Omega \{z_0, z_1, z_2, \dots\}$, and
- (ii) f is poles at the points $\{z_0, z_1, z_2, \dots\}$.

Def. pole(essential/removable) at infinity

If F(z) = f(1/z) has a pole(essential/removable) at the origin.

meromorphic function

Def. meromorphic in the extended complex

A meromorphic function in the complex plane that is either holomorphic at infinity or has a pole at infinity is said to **meromorphic in the extended complex plane**.

Theorem 3.4

The meromorphic functions in the extended complex plane are the rational functions.

meromorphic function

White board

- 4 Riemann Sphere

Some definition of Riemann Sphere

Riemann Sphere

We denote $\mathbb S$ in the Euclidean space $\mathbb R^3$ with coordinates(X,Y,Z) where the XY-plane is identified with $\mathbb C$.

We denote by $\mathbb S$ the sphere centered at $(0,0,\frac12)$ and of radius 1/2. From $\mathbb S$ to $\mathbb R$.

$$x = \frac{X}{1 - Z}$$
 and $y = \frac{Y}{1 - Z}$

From \mathbb{R} to \mathbb{S} ,

$$X = \frac{x}{x^2 + y^2 + 1}, Y = \frac{y}{x^2 + y^2 = 1}, Z = \frac{x^2 + y^2}{x^2 + y^2 + 1}$$

13 / 15

Riemann Sphere

Thanks for listening!