复分析讨论班第四次讨论

Zijie Wen

Department of Mathematics, Sustech

2023.1.19

- Morera's theorem
- 2 Sequence of holomorphic functions
- 3 Holomorphic functions defined in terms of integrals

- Morera's theorem
- 2 Sequence of holomorphic functions
- Holomorphic functions defined in terms of integrals

Review

Remark

From the last chapter, we learn Cauchy theorem. We knows that if f is holomorphic in a open set Ω , then for every triangle $T \subset \Omega$ whose interior is also contained in Ω , then $\int_{\mathcal{T}} f(z) \mathrm{d}x$.

When triangle vanish

Question

Now, we what to measure the gap from the result to the condition. That is, when the function f is holomorphic?

Morera 's Theorem

Suppose f is a continuous function in the open disc D such that for any triangle T contained in D

$$\int_{T} f(z) \, dz = 0$$

then f is holomorphic.

When triangle vanish

Question

Now, we what to measure the gap from the result to the condition. That is, when the function f is holomorphic?

Morera 's Theorem

Suppose f is a continuous function in the open disc D such that for any triangle \mathcal{T} contained in D

$$\int_T f(z) \, dz = 0$$

then f is holomorphic.

- 1 Morera's theorem
- 2 Sequence of holomorphic functions
- 3 Holomorphic functions defined in terms of integrals

The past is its prelude

Similar Theorem (15.3.1)

For a real-value function sequence $\{f_n\}_{n=1}^{\infty}$, if $\forall n \in \mathbb{Z}_+$, f_n is continuous on I, and $\{f_n\}_{n=1}^{\infty}$ uniformly converge to f, then f is continuous on I.

holomorphic for a convergent

Observation

In real-value function, the uniformly convergent can hold continuity. There is similarity in complex-value function. Actually, "holomorphic" is more rigid than the "derivable". This allow us to go further to the holomorphic.

Theorem

If $\{f_n\}_{n=1}^{\infty}$ is a sequence of holomorphic functions that converges uniformly to a function f in every compact subset of Ω , then f is holomorphic in Ω .

holomorphic for a convergent

Observation

In real-value function, the uniformly convergent can hold continuity. There is similarity in complex-value function. Actually, "holomorphic" is more rigid than the "derivable". This allow us to go further to the holomorphic.

Theorem

If $\{f_n\}_{n=1}^{\infty}$ is a sequence of holomorphic functions that converges uniformly to a function f in every compact subset of Ω , then f is holomorphic in Ω .

further

Sometimes, the function f cannot be expressed by common symbols. We wish that we can compute the derivative of f through the sequence $\{f_n\}_{n=1}^{\infty}$.

Remark

In mathematical analysis, we have proposition below (15.3.7):

- (a) $\forall n \in \mathbb{Z}_+, f_n \in C^1[a, b].$
- (b) $\lim_{n\to\infty} f'_n = g$
- (c) $\exists x_0 \in [a, b], s.t. \{f_n(x_0)\}_{n=1}^{\infty}$ converge then , $\{f_n\}_{n=1}^{\infty}$ uniformly converge to some function

$$\left(\lim_{n\to\infty}f_n\right)'=\lim_{n\to\infty}f_n$$

further

Sometimes, the function f cannot be expressed by common symbols. We wish that we can compute the derivative of f through the sequence $\{f_n\}_{n=1}^{\infty}$.

Remark

In mathematical analysis, we have proposition below (15.3.7):

- (a) $\forall n \in \mathbb{Z}_+, f_n \in C^1[a, b].$
- (b) $\lim_{n\to\infty} f'_n = g$
- (c) $\exists x_0 \in [a,b], s.t. \{f_n(x_0)\}_{n=1}^{\infty}$ converge then , $\{f_n\}_{n=1}^{\infty}$ uniformly converge to some function f and

$$(\lim_{n\to\infty}f_n)'=\lim_{n\to\infty}f_n'$$

Observation

According to the work for Chauchy 's theorem, we know the derivation of f on z_0 can be computed by the value of f in a small circle C whose center is z_0 .

Theorem

If $\{f_n\}_{n=1}^{\infty}$ is a sequence of holomorphic functions that converges uniformly to a function f in every compact subset of Ω , then the sequence of $\{f'_n\}_{n=1}^{\infty}$ converge uniformly to f' on every compact subset of Ω .

Observation

According to the work for Chauchy 's theorem, we know the derivation of f on z_0 can be computed by the value of f in a small circle C whose center is z_0 .

Theorem

If $\{f_n\}_{n=1}^{\infty}$ is a sequence of holomorphic functions that converges uniformly to a function f in every compact subset of Ω , then the sequence of $\{f'_n\}_{n=1}^{\infty}$ converge uniformly to f' on every compact subset of Ω .

Some Function constructed by a sequence

$$F(x) = \sum_{n=1}^{\infty} f_n(x)$$

Common examples

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

$$\vartheta(t) = \sum_{n=1}^{+\infty} e^{-\pi n^2 t}$$

- 3 Holomorphic functions defined in terms of integrals

Further step to generality

Remark

$$\varphi(x) = \int_a^b F(x,\xi) \,\mathrm{d}\xi$$

The final stop

Theorem

Let F(z,s) be defined for $(z,s) \in \Omega \times [0,1]$ where Ω is an open set in \mathbb{C} . Suppose F satisfies the following properties:

- (i) F(z, s) is holomorphic in z for each s.
- (ii) F is continuous on $\Omega \times [0,1]$ by

$$f(x) = \int_0^1 F(z, s) \, \mathrm{d}s$$

is holomorphic.

Thanks!