
A basic problem: Given a holomorphic function f on a region, 
how can one count the number of zeros inside the region? 
We may begin with a baby case:

Convention: counting in this section is always with multiplicities.

A analogous problem: Given a meromorphic function f on a region, 
how can one count the number of poles inside the region? 
Another baby case:

It requires a technique to extract the power index n out
Recall the logarithm operation in real analysis will do
Mimic this process and observe that derivation will 
preserve the desired information of multiplicities

We combine the two results and formulate them as the well known Argument Principle :

We finish this section by several important applications of the prominent Argument principle
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Consider holomorphic function f, having no poles, enforce an appropriate perturbation on f, 
what happen on the number of zeros? Rouche’s theorem gives an approach:

Invariant of domain is the key characteristic of Euclidean space, 
that is continuous function is open map. 
There is something similar in complex plane, if we add the 
holomorphic condition on the map, namely the open map theorem:

As a consequence of openness of holomorphic function, for a point in image,
there is always a point in its neighborhood further from origin.
This idea leads to the Maximum Modules Principle:
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An interpretation of this idea is that non-constant holomorphic function cannot attain 
a maximum in the region

As a corollary, if the region is rigged with a compact closure,we can estimate the 
supremum of the module of image by the periphery of the closure:
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