From Calculus to Cohomology via Differential Forms

Tongtong Liang

SUSTech

Jan. 13, 2023

Tongtong Liang (SUSTech) From Calculus to Cohomology via Dif Jan. 13, 2023

Motivation and Examples

2 Differential Forms with Intuition

3 de Rham Cohomology Theory and its Applications

4 Summary

Goal: study the genuine shapes of spaces and distinguish them (Here we focus on the case of open sets in \mathbb{R}^n)

Motivation: distinguish spaces

Goal: study the genuine shapes of spaces and distinguish them (Here we focus on the case of open sets in \mathbb{R}^n)

Tools in hand: calculus and linear algebra

Motivation: distinguish spaces

Goal: study the genuine shapes of spaces and distinguish them (Here we focus on the case of open sets in \mathbb{R}^n)

Tools in hand: calculus and linear algebra

Strategy: Study the vector space of \mathbb{R} -functions of spaces.

Goal: study the genuine shapes of spaces and distinguish them (Here we focus on the case of open sets in \mathbb{R}^n)

Tools in hand: calculus and linear algebra

Strategy: Study the vector space of \mathbb{R} -functions of spaces.

Example

If two spaces have different numbers of connected components, then they must be genuinely different. Let $U \subset \mathbb{R}^n$ be an open subset,

$$|\pi_0(X)| = \dim\{f \in C^1(U) \mid df = 0\}$$

because the vanishing of the derivation df means that f is a locally constant function.

Example (Counting pieces is NOT enough)

For \mathbb{R}^2 and $\mathbb{R}^2 - 0$, we think they are distinguished intuitively, even though they have the same number of pieces.

Example (Counting pieces is NOT enough)

For \mathbb{R}^2 and $\mathbb{R}^2 - 0$, we think they are distinguished intuitively, even though they have the same number of pieces.

Note that $\mathbb{R}^2 - 0$ has a hole, while \mathbb{R}^2 does not. In other words, locally constant functions are not sensitive enough to detect "holes".

Example (Counting pieces is NOT enough)

For \mathbb{R}^2 and $\mathbb{R}^2 - 0$, we think they are distinguished intuitively, even though they have the same number of pieces.

Note that $\mathbb{R}^2 - 0$ has a hole, while \mathbb{R}^2 does not. In other words, locally constant functions are not sensitive enough to detect "holes".

Goal: find smooth functions that can detect holes (at least two-dimensional holes).

Proposition

Let L, l_1, l_2, \dots, l_n be disjoint closed simple curves on \mathbb{R}^2 such that l_1, \dots, l_n are contained in the interior Ω_L of L. Let D be a subset of Ω_L such that $\partial D = L \coprod l_1 \coprod l_1 \coprod \dots \coprod l_n$. Suppose P(x, y) and Q(x, y) are functions with continuous partial derivations, then

$$\iint_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \mathrm{d}x \mathrm{d}y = \oint_{L} + \oint_{l_{1}} + \dots + \oint_{l_{n}} P \mathrm{d}x + Q \mathrm{d}y$$

Let $U \subset \mathbb{R}^2$ be an open subset. A pair of smooth functions $f, g: U \to \mathbb{R}^2$ is called an **irrotational field**, if $\frac{\partial f}{\partial y} - \frac{\partial g}{\partial x} = 0$. It is called **a potential field** if there exists a function $F: \mathbb{R}^2 \to \mathbb{R}$ such that $\frac{\partial F}{\partial x} = f$ and $\frac{\partial F}{\partial y} = g$.

Let $U \subset \mathbb{R}^2$ be an open subset. A pair of smooth functions $f, g: U \to \mathbb{R}^2$ is called an **irrotational field**, if $\frac{\partial f}{\partial y} - \frac{\partial g}{\partial x} = 0$. It is called **a potential field** if there exists a function $F: \mathbb{R}^2 \to \mathbb{R}$ such that $\frac{\partial F}{\partial x} = f$ and $\frac{\partial F}{\partial y} = g$.

Proposition

The following assertions distinguish \mathbb{R}^2 and $\mathbb{R}^2 - 0$:

Let $U \subset \mathbb{R}^2$ be an open subset. A pair of smooth functions $f, g: U \to \mathbb{R}^2$ is called an **irrotational field**, if $\frac{\partial f}{\partial y} - \frac{\partial g}{\partial x} = 0$. It is called **a potential field** if there exists a function $F: \mathbb{R}^2 \to \mathbb{R}$ such that $\frac{\partial F}{\partial x} = f$ and $\frac{\partial F}{\partial y} = g$.

Proposition

The following assertions distinguish \mathbb{R}^2 and $\mathbb{R}^2 - 0$:

• Any irrotational field on \mathbb{R}^2 is a potential field.

Let $U \subset \mathbb{R}^2$ be an open subset. A pair of smooth functions $f, g: U \to \mathbb{R}^2$ is called an **irrotational field**, if $\frac{\partial f}{\partial y} - \frac{\partial g}{\partial x} = 0$. It is called **a potential field** if there exists a function $F: \mathbb{R}^2 \to \mathbb{R}$ such that $\frac{\partial F}{\partial x} = f$ and $\frac{\partial F}{\partial y} = g$.

Proposition

The following assertions distinguish \mathbb{R}^2 and $\mathbb{R}^2 - 0$:

- Any irrotational field on \mathbb{R}^2 is a potential field.
- 2 There exists an irrotational field on $\mathbb{R}^2 0$ that is not a potential field. For example, $(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$.

Note that the set of smooth vector fields (or irrotational fields, or potential fields) on U forms a vector space. We summarize the previous observation as

• dim{irrotational fields on \mathbb{R}^2 }/{potential fields on \mathbb{R}^2 } = 0.

Note that the set of smooth vector fields (or irrotational fields, or potential fields) on U forms a vector space. We summarize the previous observation as

- dim{irrotational fields on \mathbb{R}^2 }/{potential fields on \mathbb{R}^2 } = 0.
- 2 dim{irrotational fields on $\mathbb{R}^2 0$ }/{potential fields on $\mathbb{R}^2 0$ } ≥ 1

Note that the set of smooth vector fields (or irrotational fields, or potential fields) on U forms a vector space. We summarize the previous observation as

- dim{irrotational fields on \mathbb{R}^2 }/{potential fields on \mathbb{R}^2 } = 0.
- 2 dim{irrotational fields on $\mathbb{R}^2 0$ }/{potential fields on $\mathbb{R}^2 0$ } ≥ 1

From this viewpoint, functions and vector fields will help us understand the shape of a space. Our goal is to develop this method systematically via differential forms.

Motivation and Examples

2 Differential Forms with Intuition

3 de Rham Cohomology Theory and its Applications

4 Summary

Differentials forms: 1-forms on vector spaces

Definition

A 1-form on a vector space V is a linear functional ω i.e. a linear map $\omega\colon V\to\mathbb{R}.$

A 1-form on a vector space V is a linear functional ω i.e. a linear map $\omega\colon V\to\mathbb{R}.$

Example

Let $T_0\mathbb{R}^n = \left\langle \frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n} \right\rangle$ be a vector space. For any open neighbourhood $U \subset \mathbb{R}^n$ of 0 and any smooth function $f: U \to \mathbb{R}$, $(df)_0$ defines a 1-form

$$(\mathrm{d}f)_0 \colon \frac{\partial}{\partial x_i} \mapsto \frac{\partial f}{\partial x_i}(0)$$

(Here $T_0\mathbb{R}^n$ is the tangent space of \mathbb{R}^n at 0. Roughly speaking, the tangent space mean the space of derivations.)

Given a vector space V, its dual space V^* is the space of 1-forms on V, namely $\operatorname{Hom}(V, \mathbb{R})$. Given a basis (e_1, \cdots, e_n) of V, we define its dual basis $(\delta_1, \cdots, \delta_n)$ for V^* by setting

 $\delta_i(e_j) = \delta_{ij}$ (Kronecker delta)

Given a vector space V, its dual space V^* is the space of 1-forms on V, namely $\operatorname{Hom}(V, \mathbb{R})$. Given a basis (e_1, \dots, e_n) of V, we define its dual basis $(\delta_1, \dots, \delta_n)$ for V^* by setting

 $\delta_i(e_j) = \delta_{ij}$ (Kronecker delta)

Example

Let $x_i \colon \mathbb{R}^n \to \mathbb{R}$ be the projection $(a_1, \cdots, a_n) \mapsto a_i$. Then $\{dx_i\}_{i=1}^n$ is the dual basis with respect to $\{\frac{\partial}{\partial x_i}\}_{i=1}^n$. From this viewpoint, we can understand why we write

$$\mathrm{d}f = \sum \frac{\partial f}{\partial x_i} \mathrm{d}x_i$$

Example (gravitational work 1-form)

Fixed an object with mass, let $\mathbf{v} \in \mathbb{R}^2$ be a vector

 $\omega(\mathbf{v})\!:=\!\mathbf{work}$ done moving the mass along \mathbf{v}

One can check that ω is indeed a 1-form.

Example (gravitational work 1-form)

Fixed an object with mass, let $\mathbf{v} \in \mathbb{R}^2$ be a vector

 $\omega(\mathbf{v})\!:=\!\mathbf{work}$ done moving the mass along \mathbf{v}

One can check that ω is indeed a 1-form.

Example

If we consider $\varphi: 2dx + dy$ on \mathbb{R}^2 , then the picture of this 1-form is given by the picture of isopotential lines with slope -0.5. One can imagine it as a picture of electric field intensity.

Let $h: \mathbb{R}^2 \to \mathbb{R}$ be a smooth function. Let $a, b \in \mathbb{R}^2$ and $\mathbf{v} = \overrightarrow{ab}$, if we define

$$\eta(\mathbf{v}) := h(b) - h(a)$$

is η a 1-form?

Let $h: \mathbb{R}^2 \to \mathbb{R}$ be a smooth function. Let $a, b \in \mathbb{R}^2$ and $\mathbf{v} = \overrightarrow{ab}$, if we define

$$\eta(\mathbf{v}) := h(b) - h(a)$$

is η a 1-form? **NO!**

Tongtong Liang (SUSTech)

The correct definition of the 1-form for h should be defined on each tangent plane. For $\mathbf{v} \in T_p$, $\zeta_p(\mathbf{v}) :=$ change of height along \mathbf{v} on T_p .

The field on T_p is given by $dh_p = \frac{\partial h}{\partial x}(p)dx + \frac{\partial h}{\partial y}(p)dy$.

The correct definition of the 1-form for h should be defined on each tangent plane. For $\mathbf{v} \in T_p$, $\zeta_p(\mathbf{v}) :=$ change of height along \mathbf{v} on T_p .

The field on T_p is given by $dh_p = \frac{\partial h}{\partial x}(p)dx + \frac{\partial h}{\partial y}(p)dy$. From this viewpoint, we know why the gradient $(\frac{\partial h}{\partial x}(p), \frac{\partial h}{\partial y}(p))$ at p is the direction of most rapid increase of h.

Given $\mathbf{u},\mathbf{v}\in\mathbb{R}^2$, we define

 $\mathcal{A}(\mathbf{u},\mathbf{v})=$ oriented area of the parallelogram with edges \mathbf{u} and \mathbf{v}

It is a linear functional on $\mathbb{R}^2 \otimes \mathbb{R}^2$ such that $\mathcal{A}(\mathbf{u}, \mathbf{v}) = -\mathcal{A}(\mathbf{v}, \mathbf{u})$.

Similarly, oriented volume is an *n*-form on \mathbb{R}^n .

Let V be a vector space. An n-form on V is a linear functional

 $\Psi\colon \mathit{V}^{\otimes n}\to\mathbb{R}$

such that $\Psi(v_1, \dots, v_n) = \operatorname{sgn}(\sigma)\Psi(v_{\sigma(1)}, \dots, v_{\sigma(n)})$ for any $\sigma \in S_n$. The space of *n*-forms on *V* is denoted by $\operatorname{Form}^n(V)$.

Let V be a vector space. An n-form on V is a linear functional

 $\Psi\colon \mathit{V}^{\otimes n}\to\mathbb{R}$

such that $\Psi(v_1, \dots, v_n) = \operatorname{sgn}(\sigma)\Psi(v_{\sigma(1)}, \dots, v_{\sigma(n)})$ for any $\sigma \in S_n$. The space of *n*-forms on *V* is denoted by $\operatorname{Form}^n(V)$.

Proposition

Any *n*-form on \mathbb{R}^n is a scalar of the determinant. In particular, $\dim \operatorname{Form}^n(\mathbb{R}^n) = 1$.

Definition

For any two $\varphi, \psi \in V^*$, the **tensor product** $\varphi \otimes \psi \in (V^{\otimes 2})^*$ is defined to be

$$\varphi \otimes \psi(v \otimes u) = \varphi(v)\psi(u)$$

The wedge product $\varphi \wedge \psi$ is defined to be

 $\varphi \wedge \psi = \varphi \otimes \psi - \psi \otimes \varphi$

Definition

For any two $\varphi, \psi \in V^*$, the **tensor product** $\varphi \otimes \psi \in (V^{\otimes 2})^*$ is defined to be

$$\varphi \otimes \psi(v \otimes u) = \varphi(v)\psi(u)$$

The wedge product $\varphi \wedge \psi$ is defined to be

$$\varphi \wedge \psi = \varphi \otimes \psi - \psi \otimes \varphi$$

Remark

$$(\mathrm{d}x \wedge \mathrm{d}y)(\mathbf{u}, \mathbf{v}) = (\mathrm{d}x \otimes \mathrm{d}y - \mathrm{d}y \otimes \mathrm{d}x) \left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \right)$$
$$= u_1 v_2 - u_2 v_1 = \det \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix}$$
$$= \mathcal{A}(\mathbf{u}, \mathbf{v})$$

Definition

The wedge product \wedge : Form^{*p*}(*V*) × Form^{*q*}(*V*) → Form^{*p*+*q*}(*V*) is defined to by

$$(\omega_1 \wedge \omega_2)(v_1, \cdots, v_{p+q}) = \sum_{\sigma \in S(p,q)} \operatorname{sgn}(\sigma) \omega_1(v_{\sigma(1)}, \cdots, v_{\sigma(p)}) \omega_2(v_{\sigma(p+1)}, \cdots, v_{\sigma(p+1)}) \omega_2(v_{\sigma(p+1)},$$

where $S(p,q) \subset S_{p+q}$ is the subset of (p,q) shuffle of $\{1, \cdots, p+q\}$ i.e.

$$\sigma(1) < \cdots < \sigma(p)$$
 and $\sigma(p+1) < \cdots < \sigma(p+q)$

Definition

The wedge product \wedge : Form^{*p*}(*V*) × Form^{*q*}(*V*) → Form^{*p*+*q*}(*V*) is defined to by

$$(\omega_1 \wedge \omega_2)(v_1, \cdots, v_{p+q}) = \sum_{\sigma \in S(p,q)} \operatorname{sgn}(\sigma) \omega_1(v_{\sigma(1)}, \cdots, v_{\sigma(p)}) \omega_2(v_{\sigma(p+1)}, \cdots, v_{\sigma(p+1)}) \omega_2(v_{\sigma(p+1)},$$

where $S(p,q) \subset S_{p+q}$ is the subset of (p,q) shuffle of $\{1, \dots, p+q\}$ i.e.

$$\sigma(1) < \cdots < \sigma(p)$$
 and $\sigma(p+1) < \cdots < \sigma(p+q)$

Remark

In this way, $\operatorname{Form}^*(V) = \bigoplus_n \operatorname{Form}^n(V)$ is an anti-commutative graded \mathbb{R} -algebra.

Motivation and Examples

- 2 Differential Forms with Intuition
- 3 de Rham Cohomology Theory and its Applications

4 Summary
Let $U \subset \mathbb{R}^n$ be an open subset. A differential k-form ω on U is a smooth map

 $\omega\colon U\to \operatorname{Form}^k(\mathbb{R}^n)$

Note that a 0-form is a smooth function on U. The space of differential k-forms on U is denoted by $\Omega^k(U)$.

Let $U \subset \mathbb{R}^n$ be an open subset. A differential $k\text{-form }\omega$ on $U \, \text{is a smooth map}$

$$\omega\colon U\to \operatorname{Form}^k(\mathbb{R}^n)$$

Note that a 0-form is a smooth function on U. The space of differential k-forms on U is denoted by $\Omega^k(U)$.

Remark

We may write a differential k-form ω by

$$\omega = \sum f_I \mathrm{d} x_I$$

where *I* is an ordered set $\{i_1 < \cdots < i_k\}$ of $\{1, \cdots, n\}$ and dx_I means $dx_{i_1} \wedge \cdots \wedge dx_{i_k}$.

Tongtong Liang (SUSTech)

Jan. 13, 2023

19 / 32

Suppose $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^n$ are two open subsets, for any smooth map $f: U \to V$, the pull-back $f^* : \Omega^k(V) \to \Omega^k(U)$ is defined by pre-composed

$$f^* \colon \left(V \xrightarrow{\omega} \operatorname{Form}^k(\mathbb{R}^n) \right) \mapsto \left(U \xrightarrow{f} V \xrightarrow{\omega} \operatorname{Form}^k(\mathbb{R}^n) \right)$$

Suppose $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^n$ are two open subsets, for any smooth map $f: U \to V$, the pull-back $f^* : \Omega^k(V) \to \Omega^k(U)$ is defined by pre-composed

$$f^* \colon \left(V \xrightarrow{\omega} \operatorname{Form}^k(\mathbb{R}^n) \right) \mapsto \left(U \xrightarrow{f} V \xrightarrow{\omega} \operatorname{Form}^k(\mathbb{R}^n) \right)$$

Definition (differential operator)

Suppose $\omega = \sum f_I dx_I \in \Omega^k(U)$, the differential operator $d: \Omega^k(U) \to \Omega^{k+1}(U)$ is defined by

$$\mathrm{d} \colon \sum f_I \mathrm{d} x_I \mapsto \sum \mathrm{d} f_I \wedge \mathrm{d} x_I$$

Lemma

The composition $\Omega^{k-1}(U) \xrightarrow{d} \Omega^k(U) \xrightarrow{d} \Omega^{k+1}(U)$ is the zero map.

Lemma

The composition $\Omega^{k-1}(U) \xrightarrow{d} \Omega^k(U) \xrightarrow{d} \Omega^{k+1}(U)$ is the zero map.

Definition (de Rham cohomology theory) Suppose $U \subset \mathbb{R}^n$, the **de Rham complex** $\Omega^*(U)$ is

$$0 \to \Omega^0(U) \xrightarrow{d} \Omega^1(U) \xrightarrow{d} \Omega^2(U) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n(U)$$

The *q*-th **de Rham cohomology** $H^q_{DR}(U)$ of *U* is $H^q\Omega^*(U)$. A differential *k*-form ω is **closed** if $d\omega = 0$; ω is **exact** if $\omega = d\psi$ for a differential k - 1-form ψ .

Example: de Rham cohomology for \mathbb{R}^2 and $\mathbb{R}^2 - 0$

Example

$$H_{DR}^{i}(\mathbb{R}^{2}) = \begin{cases} \mathbb{R}, & i = 0\\ 0, & \text{otherwise} \end{cases}$$

Example: de Rham cohomology for \mathbb{R}^2 and $\mathbb{R}^2 - 0$

Example

$$H^i_{DR}(\mathbb{R}^2) = egin{cases} \mathbb{R}, & i=0 \ 0, & ext{otherwise} \end{cases}$$

Example

Now we show $H_{DR}^1(\mathbb{R}^2 - 0) = \mathbb{R}$: let S^1 be the unit circle in \mathbb{R} , define

$$\int_{S^1} : H^1_{DR}(\mathbb{R}^2 - 0) \to \mathbb{R}$$

We just need to show it is injective. Suppose ω is a closed 1-form such that $\int_{S^1} \omega = 0$. We claim that for each closed curve C in $\mathbb{R}^2 - 0$, $\int_C \omega = 0$. Then ω will be a conservative field and thus exact.

Suppose $U, V \subset \mathbb{R}^n$ and let $i: U \hookrightarrow U \cup V$ and $j: V \hookrightarrow U \cup V$. Then there is a short exact sequence for de Rham complexes

$$0 \to \Omega^*(U \cup V) \xrightarrow{(i^*, j^*)} \Omega^*(U) \oplus \Omega^*(V) \xrightarrow{\psi} \Omega^*(U \cap V) \to 0$$

where $\psi(\omega, \tau) = \tau - \omega$.

This will induce a long exact sequence for de Rham cohomology groups:

$$\cdots \to H^{i}_{DR}(U) \oplus H^{i}_{DR}(V) \to H^{i}_{DR}(U \cap V) \to H^{i+1}(U \cup V) \to \cdots$$

Let $f, g: X \to Y$ be two continuous maps. We say f is homotopic to g, if there exists a continuous map $H: X \times I \to Y$ such that H(x, 0) = f(x)and H(x, 1) = g(x). We denote it by $f \sim_h g$. Suppose f, g are smooth, we say f is smooth homotopic to g if H is

also smooth.

Let $f, g: X \to Y$ be two continuous maps. We say f is homotopic to g, if there exists a continuous map $H: X \times I \to Y$ such that H(x, 0) = f(x)and H(x, 1) = g(x). We denote it by $f \sim_h g$. Suppose f, g are smooth, we say f is smooth homotopic to g if H is also smooth.

Definition

 $f: X \to Y$ is a homotopy equivalence if there exists a continuous map $g: Y \to X$ such that $f \circ g \sim_h \operatorname{id}_Y$ and $g \circ f \sim_h \operatorname{id}_X$. We say X is homotopy equivalent to Y if there exists a homotopy equivalence $X \to Y$.

Let $f, g: X \to Y$ be two continuous maps. We say f is homotopic to g, if there exists a continuous map $H: X \times I \to Y$ such that H(x, 0) = f(x)and H(x, 1) = g(x). We denote it by $f \sim_h g$. Suppose f, g are smooth, we say f is smooth homotopic to g if H is also smooth.

Definition

 $f: X \to Y$ is a homotopy equivalence if there exists a continuous map $g: Y \to X$ such that $f \circ g \sim_h \operatorname{id}_Y$ and $g \circ f \sim_h \operatorname{id}_X$. We say X is homotopy equivalent to Y if there exists a homotopy equivalence $X \to Y$.

Example

 $\mathbb{R}^n - 0$ is homotopy equivalent to S^{n-1} .

Tongtong Liang (SUSTech)

From Calculus to Cohomology via Differential

lan. 13. 2023

Let $p \colon \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ be the projection. Then induced pull-back $p^* \colon H^*_{DR}(\mathbb{R}^n) \to H^*_{DR}(\mathbb{R}^n \times \mathbb{R})$ is an isomorphism.

Let $p \colon \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ be the projection. Then induced pull-back $p^* \colon H^*_{DR}(\mathbb{R}^n) \to H^*_{DR}(\mathbb{R}^n \times \mathbb{R})$ is an isomorphism.

Corollary (Poincare lemma)

 $H^i_{DR}(\mathbb{R}^n)=0$ for i>0. In other words, any closed form on \mathbb{R}^n is exact.

Let $p \colon \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ be the projection. Then induced pull-back $p^* \colon H^*_{DR}(\mathbb{R}^n) \to H^*_{DR}(\mathbb{R}^n \times \mathbb{R})$ is an isomorphism.

Corollary (Poincare lemma)

 $H^i_{DR}(\mathbb{R}^n)=0$ for i>0. In other words, any closed form on \mathbb{R}^n is exact.

Proposition

If $f, g: U \to V$ are homotopic, then $f^* = g^* \colon H^*_{DR}(V) \to H^*_{DR}(U)$.

Let $p \colon \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ be the projection. Then induced pull-back $p^* \colon H^*_{DR}(\mathbb{R}^n) \to H^*_{DR}(\mathbb{R}^n \times \mathbb{R})$ is an isomorphism.

Corollary (Poincare lemma)

 $H^i_{DR}(\mathbb{R}^n)=0$ for i>0. In other words, any closed form on \mathbb{R}^n is exact.

Proposition

If $f, g: U \to V$ are homotopic, then $f^* = g^* \colon H^*_{DR}(V) \to H^*_{DR}(U)$.

Corollary

If U and V are homotopy equivalent, then $H^*_{DR}(U) \simeq H^*_{DR}(V)$.

Tongtong Liang (SUSTech)

de Rham cohomology of spheres

Proposition

Let S^n be an *n*-dimensional sphere. Then $H^i_{DR}(S^n) = \mathbb{R}$ if and only if i = 0, n.

de Rham cohomology of spheres

Proposition

Let S^n be an *n*-dimensional sphere. Then $H^i_{DR}(S^n) = \mathbb{R}$ if and only if i = 0, n.

Proof.

de Rham cohomology of spheres

Proposition

Let S^n be an *n*-dimensional sphere. Then $H^i_{DR}(S^n) = \mathbb{R}$ if and only if i = 0, n.

Proof.

We sketch the proof in the following way:

• Use the homotopy invariant property to show that $H^1_{DR}(S^1) \cong H^1_{DR}(\mathbb{R}^2 - 0) \cong \mathbb{R}.$

Let S^n be an *n*-dimensional sphere. Then $H^i_{DR}(S^n) = \mathbb{R}$ if and only if i = 0, n.

Proof.

- Use the homotopy invariant property to show that $H^1_{DR}(S^1) \cong H^1_{DR}(\mathbb{R}^2 0) \cong \mathbb{R}.$
- 2 Argue by induction on n: suppose this assertion is true for S^{n-1} .

Let S^n be an *n*-dimensional sphere. Then $H^i_{DR}(S^n) = \mathbb{R}$ if and only if i = 0, n.

Proof.

- Use the homotopy invariant property to show that $H^1_{DR}(S^1) \cong H^1_{DR}(\mathbb{R}^2 0) \cong \mathbb{R}.$
- 2 Argue by induction on n: suppose this assertion is true for S^{n-1} .
- 3 Find an open cover $\{D^n_+, D^n_-\}$ of S^n with $D^n_+ \cap D^n_- \simeq S^{n-1}$.

Let S^n be an *n*-dimensional sphere. Then $H^i_{DR}(S^n) = \mathbb{R}$ if and only if i = 0, n.

Proof.

- Use the homotopy invariant property to show that $H^1_{DR}(S^1) \cong H^1_{DR}(\mathbb{R}^2 0) \cong \mathbb{R}$.
- 2 Argue by induction on n: suppose this assertion is true for S^{n-1} .
- Sind an open cover $\{D^n_+, D^n_-\}$ of S^n with $D^n_+ \cap D^n_- \simeq S^{n-1}$.
- Use the long exact sequence by Mayer-Vietoris property and this open cover.

Since $\mathbb{R}^n - 0 \simeq S^{n-1}$, we have $H^*_{DR}(\mathbb{R}^n - 0) = \mathbb{R}$. Let A be an $n \times n$ invertible matrix and define $f_A : \mathbb{R}^n - 0 \to \mathbb{R}^n - 0$ by $\mathbf{v} \mapsto A\mathbf{v}$.

Proposition

For each $n \ge 2$, the induced map $f_A^* \colon H_{DR}^{n-1}(\mathbb{R}^n - 0) \to H_{DR}^{n-1}(\mathbb{R}^n - 0)$ is a multiplication by $\det A/|\det A|$.

Since $\mathbb{R}^n - 0 \simeq S^{n-1}$, we have $H^*_{DR}(\mathbb{R}^n - 0) = \mathbb{R}$. Let A be an $n \times n$ invertible matrix and define $f_A : \mathbb{R}^n - 0 \to \mathbb{R}^n - 0$ by $\mathbf{v} \mapsto A\mathbf{v}$.

Proposition

For each $n \ge 2$, the induced map $f_A^* \colon H_{DR}^{n-1}(\mathbb{R}^n - 0) \to H_{DR}^{n-1}(\mathbb{R}^n - 0)$ is a multiplication by $\det A/|\det A|$.

Proof.

Since $\mathbb{R}^n - 0 \simeq S^{n-1}$, we have $H^*_{DR}(\mathbb{R}^n - 0) = \mathbb{R}$. Let A be an $n \times n$ invertible matrix and define $f_A : \mathbb{R}^n - 0 \to \mathbb{R}^n - 0$ by $\mathbf{v} \mapsto A\mathbf{v}$.

Proposition

For each $n \ge 2$, the induced map $f_A^* \colon H_{DR}^{n-1}(\mathbb{R}^n - 0) \to H_{DR}^{n-1}(\mathbb{R}^n - 0)$ is a multiplication by $\det A/|\det A|$.

Proof.

We sketch the proof in the following steps:

• Reduce to the case where A is a diagonal matrix by LDU decomposition and $f_A \sim_h f_D$.

Since $\mathbb{R}^n - 0 \simeq S^{n-1}$, we have $H^*_{DR}(\mathbb{R}^n - 0) = \mathbb{R}$. Let A be an $n \times n$ invertible matrix and define $f_A : \mathbb{R}^n - 0 \to \mathbb{R}^n - 0$ by $\mathbf{v} \mapsto A\mathbf{v}$.

Proposition

For each $n \ge 2$, the induced map $f_A^* \colon H_{DR}^{n-1}(\mathbb{R}^n - 0) \to H_{DR}^{n-1}(\mathbb{R}^n - 0)$ is a multiplication by $\det A/|\det A|$.

Proof.

- Reduce to the case where A is a diagonal matrix by LDU decomposition and $f_A \sim_h f_D$.
- **2** Reduce to the case where $D = diag(\pm 1, \dots, \pm 1, \pm 1)$.

Since $\mathbb{R}^n - 0 \simeq S^{n-1}$, we have $H^*_{DR}(\mathbb{R}^n - 0) = \mathbb{R}$. Let A be an $n \times n$ invertible matrix and define $f_A : \mathbb{R}^n - 0 \to \mathbb{R}^n - 0$ by $\mathbf{v} \mapsto A\mathbf{v}$.

Proposition

For each $n \ge 2$, the induced map $f_A^* \colon H_{DR}^{n-1}(\mathbb{R}^n - 0) \to H_{DR}^{n-1}(\mathbb{R}^n - 0)$ is a multiplication by $\det A/|\det A|$.

Proof.

- Reduce to the case where A is a diagonal matrix by LDU decomposition and $f_A \sim_h f_D$.
- **2** Reduce to the case where $D = diag(\pm 1, \dots, \pm 1, \pm 1)$.
- **3** Reduce to the case where $D = diag(1, \dots, 1, \pm 1)$.

Since $\mathbb{R}^n - 0 \simeq S^{n-1}$, we have $H^*_{DR}(\mathbb{R}^n - 0) = \mathbb{R}$. Let A be an $n \times n$ invertible matrix and define $f_A : \mathbb{R}^n - 0 \to \mathbb{R}^n - 0$ by $\mathbf{v} \mapsto A\mathbf{v}$.

Proposition

For each $n \ge 2$, the induced map $f_A^* \colon H_{DR}^{n-1}(\mathbb{R}^n - 0) \to H_{DR}^{n-1}(\mathbb{R}^n - 0)$ is a multiplication by $\det A/|\det A|$.

Proof.

- Reduce to the case where A is a diagonal matrix by LDU decomposition and $f_A \sim_h f_D$.
- **2** Reduce to the case where $D = \text{diag}(\pm 1, \dots, \pm 1, \pm 1)$.
- **3** Reduce to the case where $D = diag(1, \dots, 1, \pm 1)$.
- Use Mayer-Vietoris property.

Application: vector fields on spheres

Theorem

The sphere S^n has a tangent vector field v with $v(x) \neq 0$ for $x \in S^n$ if and only if n is odd.

Application: vector fields on spheres

Theorem

The sphere S^n has a tangent vector field v with $v(x) \neq 0$ for $x \in S^n$ if and only if n is odd.

Proof.

Suppose such a tangent vector field v exists, we may extend it to a map $f: \mathbb{R}^{n+1} - 0 \to \mathbb{R}^{n+1} - 0$ by $x \mapsto v(x/||x||)$ (here we may embed S^n into $\mathbb{R}^{n+1} - 0$). Note that x and v(x) are orthogonal. Then we have $F(x, t) = (\cos \pi t)x + (\sin \pi t)v(x)$ that defines a homotopy from id_{S^n} to $f_{\mathrm{diag}(-1,\cdots,-1)}$. By previous calculation, $f^*_{\mathrm{diag}(-1,\cdots,-1)}$ is a multiplication by $(-1)^{n+1}$, which forces that n must be odd. Conversely, for n = 2m - 1, consider

$$v(x_1, x_2, \cdots, x_{2m}) = (-x_2, x_1, -x_4, x_3, \cdots, -x_{2m-1}, x_{2m-1})$$

Question

What is the maximal number of pointwise linearly independent tangent vector fields one may have on *S*ⁿ?

Question

What is the maximal number of pointwise linearly independent tangent vector fields one may have on *S*ⁿ?

This question is left as an exercise.

Question

What is the maximal number of pointwise linearly independent tangent vector fields one may have on *S*ⁿ?

This question is left as an exercise.

Just kidding! Adams solved this problem completely in 1962 using K-theory and cohomology operations on K-theory (so-called Adams operations).

Motivation and Examples

- 2 Differential Forms with Intuition
- 3 de Rham Cohomology Theory and its Applications

4 Summary

• Slogan: algebraic structures of functions on a space detect the intrinsic shape of the space.

- Slogan: algebraic structures of functions on a space detect the intrinsic shape of the space.
- In other words: the shape of a space determines the algebraic structure of the functions on the space.
- Slogan: algebraic structures of functions on a space detect the intrinsic shape of the space.
- In other words: the shape of a space determines the algebraic structure of the functions on the space.
- The generalization of functions on a space is the notion of sheaves on a space.

- Slogan: algebraic structures of functions on a space detect the intrinsic shape of the space.
- In other words: the shape of a space determines the algebraic structure of the functions on the space.
- The generalization of functions on a space is the notion of sheaves on a space.
- Differential forms and de Rham cohomology can be defined on any differentiable manifolds, even algebraic varieties.

- Slogan: algebraic structures of functions on a space detect the intrinsic shape of the space.
- In other words: the shape of a space determines the algebraic structure of the functions on the space.
- The generalization of functions on a space is the notion of sheaves on a space.
- Differential forms and de Rham cohomology can be defined on any differentiable manifolds, even algebraic varieties.
- Roughly speaking, a cohomology theory assigns each space a graded algebra satisfying the Mayer-Vietoris property and homotopy property.

Raoul Bott, Loring Tu - Differential Forms in Algebraic Topology -Springer Science+Business Media, LLC (1982)

Manfredo do Carmo - Differential Forms and Applications -Springer-Verlag Berkub Heidelberg (1994)

Ib Madsen, Jørgen Tornehave - From Calculus to Cohomology, de Rham cohomology and characteristic classes - Cambridge University Press (1997)

Tristan Needham - Visual Differential Geometry and Forms, A Mathematical Drama in Five Acts - Princeton University Press (2021) (all figures in this talk comes from this book!)