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Motivation: distinguish spaces

Goal: study the genuine shapes of spaces and distinguish them (Here
we focus on the case of open sets in Rn)

Tools in hand: calculus and linear algebra

Strategy:Study the vector space of R-functions of spaces.

Example
If two spaces have different numbers of connected components, then
they must be genuinely different. Let U ⊂ Rn be an open subset,

|π0(X)| = dim{f ∈ C1(U) | df = 0}

because the vanishing of the derivation df means that f is a locally
constant function.
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Motivation: distinguished spaces

Example (Counting pieces is NOT enough)
For R2 and R2 − 0, we think they are distinguished intuitively, even
though they have the same number of pieces.

Note that R2 − 0 has a hole, while R2 does not. In other words, locally
constant functions are not sensitive enough to detect “holes”.

Goal: find smooth functions that can detect holes (at least
two-dimensional holes).
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Observation from calculus: Green formula

Proposition
Let L, l1, l2, · · · , ln be disjoint closed simple curves on R2 such that
l1, · · · , ln are contained in the interior ΩL of L. Let D be a subset of ΩL
such that ∂D = L

∐
l1
∐

· · ·
∐

ln. Suppose P(x, y) and Q(x, y) are
functions with continuous partial derivations, then∫∫

D

∂Q
∂x − ∂P

∂y dxdy =

∮
L
+

∮
l1
+ · · ·+

∮
ln

Pdx + Qddy
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Smooth vector fields detect the shape of spaces

Definition
Let U ⊂ R2 be an open subset. A pair of smooth functions
f, g : U → R2 is called an irrotational field, if ∂f

∂y − ∂g
∂x = 0.

It is called a potential field if there exists a function F : R2 → R such
that ∂F

∂x = f and ∂F
∂y = g.

Proposition
The following assertions distinguish R2 and R2 − 0:

1 Any irrotational field on R2 is a potential field.
2 There exists an irrotational field on R2 − 0 that is not a potential
field. For example, ( −y

x2+y2 ,
x

x2+y2 ).
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Reorganization of these observations

Note that the set of smooth vector fields (or irrotational fields, or
potential fields) on U forms a vector space. We summarize the
previous observation as

1 dim{irrotational fields on R2}/{potential fields on R2} = 0.

2 dim{irrotational fields on R2−0}/{potential fields on R2−0} ≥ 1

From this viewpoint, functions and vector fields will help us
understand the shape of a space. Our goal is to develop this method
systematically via differential forms.
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Differentials forms: 1-forms on vector spaces

Definition
A 1-form on a vector space V is a linear functional ω i.e. a linear map
ω : V → R.

Example
Let T0Rn =

〈
∂
∂x1 , · · · ,

∂
∂xn

〉
be a vector space. For any open

neighbourhood U ⊂ Rn of 0 and any smooth function f : U → R, (df)0
defines a 1-form

(df)0 :
∂

∂xi
7→ ∂f

∂xi
(0)

(Here T0Rn is the tangent space of Rn at 0. Roughly speaking, the
tangent space mean the space of derivations.)
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Differentials forms: 1-forms on vector spaces

Definition
Given a vector space V, its dual space V∗ is the space of 1-forms on
V, namely Hom(V,R). Given a basis (e1, · · · , en) of V, we define its
dual basis (δ1, · · · , δn) for V∗ by setting

δi(ej) = δij (Kronecker delta)

Example
Let xi : Rn → R be the projection (a1, · · · , an) 7→ ai. Then {dxi}n

i=1 is
the dual basis with respect to { ∂

∂xi
}n

i=1. From this viewpoint, we can
understand why we write

df =
∑ ∂f

∂xi
dxi
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The intuition of 1-forms

Example (gravitational work 1-form)
Fixed an object with mass, let v ∈ R2 be a vector

ω(v) := work done moving the mass along v

One can check that ω is indeed a 1-form.

Example
If we consider ϕ : 2dx + dy on R2, then the picture of this 1-form is
given by the picture of isopotential lines with slope −0.5. One can
imagine it as a picture of electric field intensity.
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The intuition of 1-forms
Let h : R2 → R be a smooth function. Let a, b ∈ R2 and v =

−→ab, if we
define

η(v) := h(b)− h(a)

is η a 1-form?

NO!
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The intuition of 1-forms

The correct definition of the 1-form for h should be defined on each
tangent plane. For v ∈ Tp, ζp(v) := change of height along v on Tp.

The field on Tp is given by dhp = ∂h
∂x (p)dx + ∂h

∂y (p)dy.

From this
viewpoint, we know why the gradient (∂h

∂x (p),
∂h
∂y (p)) at p is the

direction of most rapid increase of h.

Tongtong Liang (SUSTech) From Calculus to Cohomology via Differential Forms Jan. 13, 2023 13 / 32



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.

.

.
.
.

.

The intuition of 1-forms

The correct definition of the 1-form for h should be defined on each
tangent plane. For v ∈ Tp, ζp(v) := change of height along v on Tp.

The field on Tp is given by dhp = ∂h
∂x (p)dx + ∂h

∂y (p)dy. From this
viewpoint, we know why the gradient (∂h

∂x (p),
∂h
∂y (p)) at p is the

direction of most rapid increase of h.

Tongtong Liang (SUSTech) From Calculus to Cohomology via Differential Forms Jan. 13, 2023 13 / 32



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.

.

.
.
.

.

The intuition of n-forms

Given u, v ∈ R2, we define

A(u, v) = oriented area of the parallelogram with edges u and v

It is a linear functional on R2 ⊗ R2 such that A(u, v) = −A(v, u).

Similarly, oriented volume is an n-form on Rn.
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The definition of n-forms

Definition
Let V be a vector space. An n-form on V is a linear functional

Ψ: V⊗n → R

such that Ψ(v1, · · · , vn) = sgn(σ)Ψ(vσ(1), · · · , vσ(n)) for any σ ∈ Sn. The
space of n-forms on V is denoted by Formn(V).

Proposition
Any n-form on Rn is a scalar of the determinant. In particular,
dim Formn(Rn) = 1.
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Tensor products and wedge products

Definition
For any two ϕ,ψ ∈ V∗, the tensor product ϕ⊗ ψ ∈ (V⊗2)∗ is defined
to be

ϕ⊗ ψ(v ⊗ u) = ϕ(v)ψ(u)

The wedge product ϕ ∧ ψ is defined to be

ϕ ∧ ψ = ϕ⊗ ψ − ψ ⊗ ϕ

Remark

(dx ∧ dy)(u, v) =(dx ⊗ dy − dy ⊗ dx)
([

u1

u2

]
,

[
v1
v2

])
=u1v2 − u2v1 = det

[
u1 v1
u2 v2

]
=A(u, v)
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Tensor products and wedge products

Definition
The wedge product ∧ : Formp(V)× Formq(V) → Formp+q(V) is
defined to by

(ω1∧ω2)(v1, · · · , vp+q) =
∑

σ∈S(p,q)
sgn(σ)ω1(vσ(1), · · · , vσ(p))ω2(vσ(p+1), · · · , vσ(p+q))

where S(p, q) ⊂ Sp+q is the subset of (p, q) shuffle of {1, · · · , p + q} i.e.

σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(p + q)

Remark
In this way, Form∗(V) =

⊕
n Formn(V) is an anti-commutative graded

R-algebra.
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Outline

1 Motivation and Examples

2 Differential Forms with Intuition

3 de Rham Cohomology Theory and its Applications

4 Summary
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Differential forms on spaces

Definition
Let U ⊂ Rn be an open subset. A differential k-form ω on U is a
smooth map

ω : U → Formk(Rn)

Note that a 0-form is a smooth function on U. The space of
differential k-forms on U is denoted by Ωk(U).

Remark
We may write a differential k-form ω by

ω =
∑

fIdxI

where I is an ordered set {i1 < · · · < ik} of {1, · · · ,n} and dxI means
dxi1 ∧ · · · ∧ dxik .
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Operations on differential forms

Definition
Suppose U ⊂ Rn and V ⊂ Rn are two open subsets, for any smooth
map f : U → V, the pull-back f∗ : Ωk(V) → Ωk(U) is defined by
pre-composed

f∗ :
(

V ω−→ Formk(Rn)
)
7→

(
U f−→ V ω−→ Formk(Rn)

)

Definition (differential operator)
Suppose ω =

∑
fIdxI ∈ Ωk(U), the differential operator

d : Ωk(U) → Ωk+1(U) is defined by

d :
∑

fIdxI 7→
∑

dfI ∧ dxI
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De Rham cohomology

Lemma
The composition Ωk−1(U)

d−→ Ωk(U)
d−→ Ωk+1(U) is the zero map.

Definition (de Rham cohomology theory)
Suppose U ⊂ Rn, the de Rham complex Ω∗(U) is

0 → Ω0(U)
d−→ Ω1(U)

d−→ Ω2(U)
d−→ · · · d−→ Ωn(U)

The q-th de Rham cohomology Hq
DR(U) of U is HqΩ∗(U).

A differential k-form ω is closed if dω = 0; ω is exact if ω = dψ for a
differential k − 1-form ψ.
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Example: de Rham cohomology for R2 and R2 − 0

Example

Hi
DR(R2) =

{
R, i = 0

0, otherwise

Example
Now we show H1

DR(R2 − 0) = R: let S1 be the unit circle in R, define∫
S1

: H1
DR(R2 − 0) → R

We just need to show it is injective. Suppose ω is a closed 1-form
such that

∫
S1 ω = 0. We claim that for each closed curve C in R2 − 0,∫

C ω = 0. Then ω will be a conservative field and thus exact.
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Mayer-Vietoris property

Proposition
Suppose U,V ⊂ Rn and let i : U ↪→ U ∪ V and j : V ↪→ U ∪ V. Then
there is a short exact sequence for de Rham complexes

0 → Ω∗(U ∪ V)
(i∗,j∗)−−−−→ Ω∗(U)⊕ Ω∗(V)

ψ−→ Ω∗(U ∩ V) → 0

where ψ(ω, τ) = τ − ω.

This will induce a long exact sequence for de Rham cohomology
groups:

· · · → Hi
DR(U)⊕ Hi

DR(V) → Hi
DR(U ∩ V) → Hi+1(U ∪ V) → · · ·
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The notion of homotopy

Definition
Let f, g : X → Y be two continuous maps. We say f is homotopic to g, if
there exists a continuous map H : X × I → Y such that H(x, 0) = f(x)
and H(x, 1) = g(x). We denote it by f ∼h g.
Suppose f, g are smooth, we say f is smooth homotopic to g if H is
also smooth.

Definition
f : X → Y is a homotopy equivalence if there exists a continuous map
g : Y → X such that f ◦ g ∼h idY and g ◦ f ∼h idX. We say X is homotopy
equivalent to Y if there exists a homotopy equivalence X → Y.

Example
Rn − 0 is homotopy equivalent to Sn−1.
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Homotopy invariant property

Proposition
Let p : Rn × R → Rn be the projection. Then induced pull-back
p∗ : H∗

DR(Rn) → H∗
DR(Rn × R) is an isomorphism.

Corollary (Poincare lemma)
Hi

DR(Rn) = 0 for i > 0. In other words, any closed form on Rn is exact.

Proposition
If f, g : U → V are homotopic, then f∗ = g∗ : H∗

DR(V) → H∗
DR(U).

Corollary
If U and V are homotopy equivalent, then H∗

DR(U) ' H∗
DR(V).
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de Rham cohomology of spheres

Proposition
Let Sn be an n-dimensional sphere. Then Hi

DR(Sn) = R if and only if
i = 0,n.

Proof.
We sketch the proof in the following way:

1 Use the homotopy invariant property to show that
H1

DR(S1) ∼= H1
DR(R2 − 0) ∼= R.

2 Argue by induction on n: suppose this assertion is true for Sn−1.
3 Find an open cover {Dn

+,Dn
−} of Sn with Dn

+ ∩ Dn
− ' Sn−1.

4 Use the long exact sequence by Mayer-Vietoris property and this
open cover.
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de Rham cohomology of linear isomorphisms
Since Rn − 0 ' Sn−1, we have H∗

DR(Rn − 0) = R. Let A be an n × n
invertible matrix and define fA : Rn − 0 → Rn − 0 by v 7→ Av.

Proposition
For each n ≥ 2, the induced map f∗A : Hn−1

DR (Rn − 0) → Hn−1
DR (Rn − 0) is

a multiplication by det A/| det A|.

Proof.
We sketch the proof in the following steps:

1 Reduce to the case where A is a diagonal matrix by LDU
decomposition and fA ∼h fD.

2 Reduce to the case where D = diag(±1, · · · ,±1,±1).
3 Reduce to the case where D = diag(1, · · · , 1,±1).
4 Use Mayer-Vietoris property.
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Application: vector fields on spheres

Theorem
The sphere Sn has a tangent vector field v with v(x) 6= 0 for x ∈ Sn if
and only if n is odd.

Proof.
Suppose such a tangent vector field v exists, we may extend it to a
map f : Rn+1 − 0 → Rn+1 − 0 by x 7→ v(x/||x||) (here we may embed Sn

into Rn+1 − 0). Note that x and v(x) are orthogonal. Then we have
F(x, t) = (cosπt)x + (sinπt)v(x) that defines a homotopy from idSn to
fdiag(−1,··· ,−1). By previous calculation, f∗diag(−1,··· ,−1) is a multiplication
by (−1)n+1, which forces that n must be odd.
Conversely, for n = 2m − 1, consider

v(x1, x2, · · · , x2m) = (−x2, x1,−x4, x3, · · · ,−x2m−1, x2m−1)
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Digression: vector field problems

Question
What is the maximal number of pointwise linearly independent
tangent vector fields one may have on Sn?

This question is left as an exercise.

Just kidding! Adams solved this problem completely in 1962 using
K-theory and cohomology operations on K-theory (so-called Adams
operations).
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Outline

1 Motivation and Examples

2 Differential Forms with Intuition

3 de Rham Cohomology Theory and its Applications

4 Summary
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Summary and outlook

Slogan: algebraic structures of functions on a space detect the
intrinsic shape of the space.

In other words: the shape of a space determines the algebraic
structure of the functions on the space.
The generalization of functions on a space is the notion of
sheaves on a space.
Differential forms and de Rham cohomology can be defined on
any differentiable manifolds, even algebraic varieties.
Roughly speaking, a cohomology theory assigns each space a
graded algebra satisfying the Mayer-Vietoris property and
homotopy property.
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