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Basic setup

Definition:

Affine n-space A":= {(a1, a2,...,an) : ai € K}

Consider subset S C K|[xq, ..., x,] and the zero locus of S
V(S) :={xeA": f(x) =0,Vf € S}

If S finite , say S = {fi, ..., fx} We write V(S) = V(f, ..., f)
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Basic setup

Example:
(a) V(0)=A"
(b) V(1)=10

(c) let a=(a1,...,an), V(x1 — apn, ..., xn — an) = {a}
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Interaction with Set Operation

Proposition:

(a) S1 C S = V(51) D V(Se)
(b) V(S1)UV(S2) = V(5:152)
() NV(S) = (g i)

ieJ
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More precise expression

Observation: V(S)=V(<S>)

Indeed, for Vf,g € S and Vh € K|xi, ..., Xn]

We always have (f + g)(x) =0and h-f (x) =0Vx e V(S)
Thus we may view varieties as loci of ideals
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More precise expression

Proposition:

(a) V(J)=V(VT)

(b) V(W)U V(F) = V(NT2) = V(T T2)
(c) V()N V(F2) = V(U T) = V(J1 + J2)

This relates geometric objects to an algebraic objects
Literally assigns an ideal to a variety
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The converse assignment

Definition:
The ideal of X is [(X) := {f € K[x1,...,xn] : f(x) =0,Vx € X}
Remark: /(X) is radical
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The main theorem

Hilbert's Nullstallensatz Theorem:

. . 1-1 o :
{affine varieties in A"} <— {radical ideals in K[xi, ..., xn|}
some examples:...
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Analogous properties of I(+)

Proposition:

(a) 1(XiUXe) = 1(X1) N 1(X2)

(b) I(X1 M X2) = \/I(X1) + 1(X2)

Example:

For X; = V(x? — xo) X2 = V(x2) consider /(X; () X2) and
X1 ﬂ X2
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Few Remarks

a) Weak Nullstellensatz: for proper idea J , J has zero
Otherwise:
VI =1(V(T)) =1(0) = K[x1, ... xn) = (1) = T = (1)
b) Polynomial and function on A" agrees,since
f—gellA") =+/(0) =(0)
This motivates us to consider the functions defined on a
certain variety X
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Substructure

Definition: polynomial function on X is a map X — K that is of
the form x — f(x) for some f € K[Xi, ..., Xn]
Indeed the ring of all polynomial function on X is just
A(X) :== K[x1, ..., xa] /I(X) called coordinate ring of X
a) For Se A(Y), Wy (S) :={x € Y :f(x) =0,Vf € S} called
affine subvarieties of Y
b) Iy(X):={f € A(Y): f(x)=0,Vx € X}
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Basic setup

Definition: For affine variety X , let closed sets in X be affine
subvarieties of X(Axioms check?)
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Important geometric objects

Definition:

X reducible if X = Xj |J Xy where X1, Xy proper and closed in X
Otherwise, call X irreducible

X disconnected if X = X; |J X2 where X;, X proper closed and
disjoint in X Otherwise, call X connected
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Important geometric objects

Remark:for disconnected X = Xj [JXo A(X) = A(X1) x A(X2)
Note /(Xl) + /(XQ) = /(Xl ﬂXQ) = (1) i.e. I(Xl) + I(XQ) = (1)
1(X0) N 1(X2) = 1(X1 U Xe) = I(X) = (0)

Then Chinese Remainder Theorem finishes the proof
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Important geometric objects

Proposition: X reducible < there's zero divisor in A(X)
Remark:X irreducible < A(X) = A(Y)/I(X) is integral domain
In other word:

{irreducible subvarieties in Y'} & {prime ideals in A(Y')}
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Irreducible decomposition of variety

One may wonder if an arbitrary variety can be represented as a
union of irreducible subvarieties

However, this requires suitable finiteness condition

Definition: topological space X is Noetherian if any nested closed
sequence Xy D X7 D Xy D ... will stationary
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Irreducible decomposition of variety

Observation: affine variety is Neotherian
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Irreducible decomposition of variety

Theorem:

r
Irreducible decomposition of variety ,say X = |J X; ,exists and is

i=0
unique if X; € X;, Vi, j
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Irreducible decomposition of variety

Remark:Primary decomposition gives an irreducible decomposition
I(X)=@iN--NQr

then X=V(I(X))=V(Q)UJ...-UV(Q) = V(P)HU..U V(P
where P; = \/Q; prime

In other word:

{irreducible componentofX} & {minimal prime ideals in A(X)}
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Open set in irreducible space

Striking fact: open sets are dense in irreducible space

To some extend, open set tends to be very big in Zariski topology
Indeed no further decomposition indicates that the intersection of
any two open sets is nonempty!
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Introduction

To investigate the morphism between varieties, analogous to
manifold, we adopt a local and media approach. This leads us to
the study of correct function on varieties

Jinghua Xi

An Introduction to Algebraic Geometry



Regualr function
[e]e] le]elelele]le]

locally defined function

Definition: for U open in Y, map ¢ : U — K is regular if:
locally¥a € U there's a neighborhood U, with o = £ on U,
where f(x)=0 on U,, f, g € A(X)

Denote all regular functions on U as Ox(U)
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Identity Theorem

Lemma : V() is closed in U
Corollary : 1, @2 coincide on open U = they coincides on U
Remark : analogous to holomorphic function in complex analysis

where open sets are small
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Regular function on basic brick

Definition : distinguished open set D(f) = X — V(f),f € A(X)
Observation : distinguished open set behaves nicely w.r.t. union
and intersection:

a) D(f)(N D(g) = D(fg)

b) U=X—V(f,...fi) =X — '(_k}l V() = .L_Jl D(fi)

Indeed, those are the behaviors of basis!
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Regular function on basic brick

Theorem : Ox(D(f)) = { £ : g € A(x),n € N}

This implies regular functions behaves uniformly on each
"micro-component"

Corollary : regular function as localization Ox(D(f)) = A(X)r)
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Regular function on basic brick

Example: Oy2(A? — 0) = K|[x1, x2] thus Ox(U) = Ox(X)
Remark: in fact gives a extension which is analogous to Removable
Singularity Theorem in complex analysis
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More sophisticated view for regular function

Definition: A presheaf F on topology X consists two data:
equips open set U with a ring F(U)

brings inclusion U C V with map on ring equipped

pu,v : F(V) — F(U) as restriction map

satisfying {(0) =0 pu,v = idpyy associativity
example: Oy is the sheaf of regular functions on X
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