# Introduction to Tropical Geometry and Its Application in Matroids

#### Changqian Li

#### Southern University of Science and Technology

May 27, 2022

Changqian Li Introduction to Tropical Geometry and Its Application in Matroic

伺 ト イ ヨ ト イ ヨ

### Table of Contents



2 Tropical Geometry







2 Tropical Geometry

### 3 Matroids

Changqian Li Introduction to Tropical Geometry and Its Application in Matroic

< 同 > < ヨ > < ヨ

### Basic algebra

#### Notation:

- $\mathbb{F}$ : a field (you may consider it as  $\mathbb{R}$  or  $\mathbb{C}$ ).

伺 ト イヨト イヨト

### Basic algebraic geometry

#### Definition

Let  $\mathbb F$  be a field. The *n*-dimensional **affine space** over  $\mathbb F$  is defined to be the set

$$\mathbb{A}_{\mathbb{F}}^n := \mathbb{F}^n = \{ (x_1, \ldots, x_n) : x_i \in \mathbb{F} \}.$$

We may simply denote  $\mathbb{A}^n_{\mathbb{F}}$  by  $\mathbb{A}^n$ .

#### Example

- The *n*-dimensional real vector space  $\mathbb{A}^n_{\mathbb{R}} = \mathbb{R}^n$ .
- The *n*-dimensional complex vector space  $\mathbb{A}^n_{\mathbb{C}} = \mathbb{C}^n$ .

- 4 同 1 4 三 1 4 三 1

### Basic algebraic geometry

#### Definition

Let  $\mathbb F$  be a field. The *n*-dimensional **affine space** over  $\mathbb F$  is defined to be the set

$$\mathbb{A}_{\mathbb{F}}^n := \mathbb{F}^n = \{ (x_1, \ldots, x_n) : x_i \in \mathbb{F} \}.$$

We may simply denote  $\mathbb{A}^n_{\mathbb{F}}$  by  $\mathbb{A}^n$ .

#### Example

- The *n*-dimensional real vector space  $\mathbb{A}^n_{\mathbb{R}} = \mathbb{R}^n$ .
- The *n*-dimensional complex vector space  $\mathbb{A}^n_{\mathbb{C}} = \mathbb{C}^n$ .

- 4 同 6 4 日 6 4 日 6

### Basic algebraic geometry

#### Definition

Let  $\mathbb{F}$  be a field. Suppose *I* is an ideal (subset) in  $\mathbb{F}[x_1, \ldots, x_n]$ . Define

$$V(I) = \{ x \in \mathbb{A}_{\mathbb{F}}^n : f(x) = 0 \text{ for all } f \in I \}.$$

A subset  $X \subset \mathbb{A}^n_{\mathbb{F}}$  is called an **affine variety** if X = V(I) for some ideal I in  $\mathbb{F}[x_1, \ldots, x_n]$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Example

### Example (n = 1)

Let 
$$f = a(x - x_1) \dots (x - x_n) \in \mathbb{R}[x]$$
, where  $x_i \in \mathbb{R}$ . Then  
 $V(f) = \{x_1, \dots, x_n\}$ 

### is a finite set.

#### Example (n = 2)

Let 
$$f = x - y + 1 \in \mathbb{R}[x, y, z]$$
. Then

$$V(f) = \{(x, y) \in \mathbb{R}^2 : y = x + 1\}$$

is a line.

< ロ > < 回 > < 回 > < 回 > < 回 >

### Example

### Example (n = 1)

Let 
$$f = a(x - x_1) \dots (x - x_n) \in \mathbb{R}[x]$$
, where  $x_i \in \mathbb{R}$ . Then  
 $V(f) = \{x_1, \dots, x_n\}$ 

#### is a finite set.

Example (n = 2)

Let  $f = x - y + 1 \in \mathbb{R}[x, y, z]$ . Then

$$V(f) = \{(x, y) \in \mathbb{R}^2 : y = x + 1\}$$

is a line.

イロト イポト イヨト イヨト

## Example

### Example (n = 3)

Let  $f = x, g = y \in \mathbb{R}[x, y]$ . Then

$$V(f,g) = V(f) \cap V(g) = \{(0,0,z) : z \in \mathbb{R}\}$$

#### is a line.

Note that because

$$V(I) = \bigcap_{f \in I} V(f),$$

a variety V(I) can be considered as the intersection of some hypersurfaces.

イロト 不可 とう マロト

## Example

### Example (n = 3)

Let  $f = x, g = y \in \mathbb{R}[x, y]$ . Then

$$V(f,g) = V(f) \cap V(g) = \{(0,0,z) : z \in \mathbb{R}\}$$

is a line.

Note that because

$$V(I) = \bigcap_{f \in I} V(f),$$

a variety V(I) can be considered as the intersection of some hypersurfaces.

イロト イポト イヨト イヨト

### Outline



2 Tropical Geometry

### 3 Matroids

Changqian Li Introduction to Tropical Geometry and Its Application in Matroic

イロト イヨト イヨト

Tropical Algebra Initial Ideals Tropical Varieties

## **Tropical Algebra**

### Definition

Let  $\mathbb{R}$  be the set of real numbers. The **tropical semiring** is defined to be the set  $\mathbb{R} \cup \infty$  with **tropical addition**  $\oplus$  and **tropical multiplication**  $\otimes$  defined as follows:

$$x \oplus y := \min\{x, y\}, \ x \otimes y := x + y.$$

Changqian Li Introduction to Tropical Geometry and Its Application in Matroic

< ロ > < 同 > < 三 > < 三 >

# Example

#### Example

Consider the polynomial

$$F(x) = 2x^3 + 2x^2 + 3x + 5.$$

Its corresponding tropical polynomial is

$$f(x) = (2 \otimes x^{\otimes 3}) \oplus (2 \otimes x^{\otimes 2}) \oplus (3 \otimes x) \oplus 5$$
$$= \min\{2 + 3x, 2 + 2x, 3 + x, 5\}.$$

We may further write f(x) as

 $f(x) = 2 \otimes (x \oplus 0) \otimes (x \oplus 1) \otimes (x \oplus 2).$ 

イロト イヨト イヨト

# Example

#### Example

Consider the polynomial

$$F(x) = 2x^3 + 2x^2 + 3x + 5.$$

Its corresponding tropical polynomial is

$$f(x) = (2 \otimes x^{\otimes 3}) \oplus (2 \otimes x^{\otimes 2}) \oplus (3 \otimes x) \oplus 5$$
$$= \min\{2 + 3x, 2 + 2x, 3 + x, 5\}.$$

We may further write f(x) as

$$f(x) = 2 \otimes (x \oplus 0) \otimes (x \oplus 1) \otimes (x \oplus 2).$$

< ロ > < 同 > < 三 > < 三 >

# Example



Figure: The graph of f(x).

"Roots" of f(x): the points where the minimum is attained at least twice.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Tropical Algebra Initial Ideals Tropical Varieties

# Valuation

#### Definition

Let  $\mathbb{F}$  be a field with a valuation  $v : \mathbb{F} \to \mathbb{R} \cup \infty$ . We say v is **splitting** if  $v : \mathbb{F}^* \to v(\mathbb{F}^*)$  has a right inverse *s*, where  $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$ .

**Convention:** We denote s(x) by  $t^x$ .

### Residue field

Let  $\mathbb{F}$  be a field with a splitting valuation v. Consider the ring of elements with nonnegative valuations

$$R = \{x \in \mathbb{F} : v(x) \ge 0\}.$$

Notice that it is a local ring with a unique maximal ideal

$$m = \{x \in \mathbb{F} : v(x) > 0\}.$$

Denote the residue field R/m by k. Then we have a group homomorphism

$$\mathbb{F}^* \to k^*, \ x \mapsto \overline{xt^{-\nu(x)}}.$$

We call k the **residue field** of  $\mathbb{F}$  induced by v.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Residue field

Let  $\mathbb{F}$  be a field with a splitting valuation v. Consider the ring of elements with nonnegative valuations

$$R = \{x \in \mathbb{F} : v(x) \ge 0\}.$$

Notice that it is a local ring with a unique maximal ideal

$$m = \{x \in \mathbb{F} : v(x) > 0\}.$$

Denote the residue field R/m by k. Then we have a group homomorphism

$$\mathbb{F}^* \to k^*, \ x \mapsto \overline{xt^{-v(x)}}.$$

We call k the **residue field** of  $\mathbb{F}$  induced by v.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Tropicalization

#### Definition

Let  $\mathbb{F}$  be a field with a valuation v. Suppose  $\mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$  is the ring of Laurent polynomials over  $\mathbb{F}$ . Let  $f = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} x^{\alpha}$  be a Laurent polynomial in  $\mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ . Then the **tropicalization** of f is defined to be

trop 
$$f = \min_{\alpha \in \mathbb{Z}^n} \{ v(c_\alpha) + \alpha \cdot x \}.$$

The **initial form** of *f* with respect to a point *x* is defined to be

$$\operatorname{in}_{x} f = \sum_{v(c_{\alpha}) + \alpha \cdot x = \operatorname{trop} f(x)} \overline{c_{\alpha} t^{-v(c_{\alpha})}} x^{\alpha} \in k[x_{1}^{\pm 1}, \dots, x_{n}^{\pm 1}].$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Tropicalization

#### Definition

Let  $\mathbb{F}$  be a field with a valuation v. Suppose  $\mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$  is the ring of Laurent polynomials over  $\mathbb{F}$ . Let  $f = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} x^{\alpha}$  be a Laurent polynomial in  $\mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ . Then the **tropicalization** of f is defined to be

$$\operatorname{trop} f = \min_{\alpha \in \mathbb{Z}^n} \{ v(c_\alpha) + \alpha \cdot x \}.$$

The **initial form** of f with respect to a point x is defined to be

$$\operatorname{in}_{x} f = \sum_{v(c_{\alpha}) + \alpha \cdot x = \operatorname{trop} f(x)} \overline{c_{\alpha} t^{-v(c_{\alpha})}} x^{\alpha} \in k[x_{1}^{\pm 1}, \ldots, x_{n}^{\pm 1}].$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Tropical Algebra Initial Ideals Tropical Varieties

# Initial Ideal

#### Definition

Let  $\mathbb{F}$  be a field with a valuation v, and k be the residue field of  $\mathbb{F}$  induced by v. Suppose I is an ideal in  $\mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ . The **initial ideal** of I with respect to a point x is defined to be

$$\operatorname{in}_{x}(I) = \langle \operatorname{in}_{x} f : f \in I \rangle \subset k[x_{1}^{\pm 1}, \ldots, x_{n}^{\pm 1}].$$

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Tropical Algebra Initial Ideals Tropical Varieties

## **Tropical Hypersurface**

#### Definition

Let  $\mathbb{F}$  be a field with a valuation v. Suppose  $f \in \mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ . Then define

$$V(\operatorname{trop} f) := \begin{cases} x \in \mathbb{R}^n : \operatorname{the minimum in trop} f(x) \\ \text{is attained at least twice} \end{cases}$$

A tropical hypersurface is defined to be a set of the form

 $\operatorname{trop} V(f) := V(\operatorname{trop} f)$ 

for some  $f \in \mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ .

イロト イボト イヨト イヨト

.

Tropical Algebra Initial Ideals Tropical Varieties

## **Tropical Hypersurface**

#### Definition

Let  $\mathbb{F}$  be a field with a valuation v. Suppose  $f \in \mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ . Then define

$$V(\operatorname{trop} f) := \begin{cases} x \in \mathbb{R}^n : \operatorname{the minimum in trop} f(x) \\ \text{ is attained at least twice} \end{cases}$$

A tropical hypersurface is defined to be a set of the form

$$\operatorname{trop} V(f) := V(\operatorname{trop} f)$$

for some  $f \in \mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ .

3

Basic Algebraic Geometry Tropical Geometry Matroids Tropical Algebra Initial Ideals Tropical Varieties

# Example

#### Example

Let  $f = x - y + 1 \in \mathbb{F}[x^{\pm 1}, y^{\pm 1}]$ , where  $\mathbb{F}$  is a field with a valuation. Then

$$\operatorname{trop} f(x, y) = \min\{x, y, 0\}.$$

So

trop  $V(f) = \{x = y \le 0\} \cup \{x = 0 \le y\} \cup \{y = 0 \le x\}.$ 

イロト イヨト イヨト

3

## Example

#### Example

Let  $f = x - y + 1 \in \mathbb{F}[x^{\pm 1}, y^{\pm 1}]$ , where  $\mathbb{F}$  is a field with a valuation. Then

$$\operatorname{trop} f(x, y) = \min\{x, y, 0\}.$$

So

trop 
$$V(f) = \{x = y \le 0\} \cup \{x = 0 \le y\} \cup \{y = 0 \le x\}.$$

・ロト ・回ト ・ヨト ・ヨト

э.

Basic Algebraic Geometry Tropical Algebra Tropical Geometry Initial Ideals Matroids Tropical Varieties

## Example



Figure: The graph of trop f.

イロト イヨト イヨト

Tropical Algebra Initial Ideals Tropical Varieties

# **Tropical Varieties**

#### Definition

Let *I* be an ideal in  $\mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ , and X = V(I) be the corresponding very affine variety in the algebraic torus  $\mathbb{T}_{\mathbb{F}}^n = (\mathbb{F}^*)^n$ . The **tropicalization** trop *X* of *X* is defined to be

$$\operatorname{trop} X = \bigcap_{f \in I} \operatorname{trop} V(f) \subset \mathbb{R}^n.$$

A **tropical variety** in  $\mathbb{R}^n$  is a subset of the form trop X for some very affine variety X in the algebraic torus  $\mathbb{T}^n$ .

< ロ > < 同 > < 三 > < 三 >

#### Tropical Algebra Initial Ideals Tropical Varieties

## **Tropical Varieties**

#### Definition

Let *I* be an ideal in  $\mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ , and X = V(I) be the corresponding very affine variety in the algebraic torus  $\mathbb{T}_{\mathbb{F}}^n = (\mathbb{F}^*)^n$ . The **tropicalization** trop *X* of *X* is defined to be

$$\operatorname{trop} X = \bigcap_{f \in I} \operatorname{trop} V(f) \subset \mathbb{R}^n.$$

A **tropical variety** in  $\mathbb{R}^n$  is a subset of the form trop X for some very affine variety X in the algebraic torus  $\mathbb{T}^n$ .

< ロ > < 同 > < 三 > < 三 >

### Fundamental Theorem of Tropical Algebraic Geometry

#### Theorem (Fundamental Theorem of Tropical Algebraic Geometry)

Let  $\mathbb{F}$  be an algebraically closed field with a nontrivial valuation v. Suppose I is an ideal in the ring of Laurent polynomials  $\mathbb{F}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ . Then the following subsets of  $\mathbb{R}^n$  coincide: (1) the tropical variety trop V(I); (2) the set  $\{x \in \mathbb{R}^n : in_x(I) \neq \langle 1 \rangle\}$ ; (3) the closure of  $\{(v(x_1), \ldots, v(x_n)) : (x_1, \ldots, x_n) \in V(I))\}$  in  $\mathbb{R}^n$ .

## Example

#### Example

We continue with our previous example of the tropical variety trop f, where f = x - y + 1. Then  $V(f) = \{(x, x + 1) : x \neq 0, 1\}$ . If the valuation v is nontrivial, we have

$$\begin{aligned} v(x), v(y)) &= (v(x), v(x+1)) \\ &= \begin{cases} (v(x), 0), & \text{if } v(x) > 0; \\ (v(x), v(x)), & \text{if } v(x) < 0; \\ (0, v(x+1)), & \text{if } v(x) = 0, \ v(x+1) > 0; \\ (0, 0), & \text{otherwise.} \end{cases} \end{aligned}$$

| 4 同 ト 4 ヨ ト 4 ヨ ト

## Example

#### Example

We continue with our previous example of the tropical variety trop f, where f = x - y + 1. Then  $V(f) = \{(x, x + 1) : x \neq 0, 1\}$ . If the valuation v is nontrivial, we have

$$\begin{aligned} (v(x), v(y)) &= (v(x), v(x+1)) \\ &= \begin{cases} (v(x), 0), & \text{if } v(x) > 0; \\ (v(x), v(x)), & \text{if } v(x) < 0; \\ (0, v(x+1)), & \text{if } v(x) = 0, \ v(x+1) > 0; \\ (0, 0), & \text{otherwise.} \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

### Example

As x runs over  $\mathbb{F} \setminus \{0, 1\}$ , the closure of such a set coincides with our previous figure of trop f:



Figure: The graph of trop f.

▲ □ ▶ ▲ □ ▶ ▲



| Algebraic geometry | Tropical geometry            |
|--------------------|------------------------------|
| Polynomial f       | Tropicalization trop f       |
|                    | Initial form $in_x f$        |
| ldeal I            | Initial ideal $in_x(I)$      |
| Variety V(I)       | Tropical variety trop $V(I)$ |

Table: Algebraic geometry and tropical geometry.

< ロ > < 同 > < 三 > < 三

# Outline



2 Tropical Geometry



Changqian Li Introduction to Tropical Geometry and Its Application in Matroic

イロト イポト イヨト イヨ

Polyhedron Geometry Hyperplane Arrangements Matroids

### Polyhedron Geometry

#### Definition

A **polyhedral cone** C in  $\mathbb{R}^n$  is a positive hull of a finite subset:

$$\mathcal{C} = \mathsf{pos}(v_1, \dots, v_r) := \{\sum_{i=1}^r \lambda_i v_i \in \mathbb{R}^n : \lambda_i \in \mathbb{R}_{\geq 0} \text{ for all } i\}.$$

A fan is a collection  $\Sigma$  of polyhedral cones satisfying the following two conditions:

- (1) for any  $P \in \Sigma$ , each face of P lies in  $\Sigma$ ;
- (2) for any two elements A, B ∈ Σ, if A ∩ B ≠ Ø, A ∩ B is a face of both.

- 4 同 1 4 三 1 4 三 1

Polyhedron Geometry Hyperplane Arrangements Matroids

### Polyhedron Geometry

#### Definition

A **polyhedral cone** C in  $\mathbb{R}^n$  is a positive hull of a finite subset:

$$\mathcal{C} = \mathsf{pos}(v_1, \dots, v_r) := \{\sum_{i=1}^r \lambda_i v_i \in \mathbb{R}^n : \lambda_i \in \mathbb{R}_{\geq 0} \text{ for all } i\}.$$

A fan is a collection  $\Sigma$  of polyhedral cones satisfying the following two conditions:

- (1) for any  $P \in \Sigma$ , each face of P lies in  $\Sigma$ ;
- (2) for any two elements A, B ∈ Σ, if A ∩ B ≠ Ø, A ∩ B is a face of both.

< ロ > < 同 > < 三 > < 三 >

### Hyperplane Arrangements

Let  $\mathcal{A} = \{H_i : 0 \le i \le n\}$  be an arrangement of n + 1 hyperplanes with empty intersection in  $\mathbb{P}^d$ . We are interested in the complement  $X = \mathbb{P}^d \setminus \bigcup \mathcal{A}$ , where  $\bigcup \mathcal{A} = \bigcup_{i=0}^n H_i$ .

For each *i*, write  $b_i \in \mathbb{F}^{d+1}$  for a normal vector of the complement  $H_i$ . Set  $B = [b_0 \dots b_n]$ . Let  $\{a_1, \dots, a_{n-d}\}$  be a basis of ker B, where  $a_i = (a_{i0}, \dots, a_{in}) \in \mathbb{F}^{n+1}$ . For each *i*, let  $f_i = \sum_{j=0}^n a_{ij} x_j$ . They generate an ideal

$$I = \langle f_1, \ldots, f_{n-d} \rangle \subset \mathbb{F}[x_0^{\pm 1}, \ldots, x_n^{\pm 1}].$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Polyhedron Geometry Hyperplane Arrangements Matroids

### Hyperplane Arrangements

Let  $\mathcal{A} = \{H_i : 0 \le i \le n\}$  be an arrangement of n + 1 hyperplanes with empty intersection in  $\mathbb{P}^d$ . We are interested in the complement  $X = \mathbb{P}^d \setminus \bigcup \mathcal{A}$ , where  $\bigcup \mathcal{A} = \bigcup_{i=0}^n H_i$ . For each *i*, write  $b_i \in \mathbb{F}^{d+1}$  for a normal vector of the complement  $H_i$ . Set  $B = [b_0 \dots b_n]$ . Let  $\{a_1, \dots, a_{n-d}\}$  be a basis of ker *B*, where  $a_i = (a_{i0}, \dots, a_{in}) \in \mathbb{F}^{n+1}$ . For each *i*, let  $f_i = \sum_{j=0}^n a_{ij} x_j$ . They generate an ideal

$$I = \langle f_1, \ldots, f_{n-d} \rangle \subset \mathbb{F}[x_0^{\pm 1}, \ldots, x_n^{\pm 1}].$$

Polyhedron Geometry Hyperplane Arrangements Matroids

### Hyperplane Arrangements

Let  $\mathcal{A} = \{H_i : 0 \le i \le n\}$  be an arrangement of n + 1 hyperplanes with empty intersection in  $\mathbb{P}^d$ . We are interested in the complement  $X = \mathbb{P}^d \setminus \bigcup \mathcal{A}$ , where  $\bigcup \mathcal{A} = \bigcup_{i=0}^n H_i$ . For each *i*, write  $b_i \in \mathbb{F}^{d+1}$  for a normal vector of the complement  $H_i$ . Set  $B = [b_0 \dots b_n]$ . Let  $\{a_1, \dots, a_{n-d}\}$  be a basis of ker *B*, where  $a_i = (a_{i0}, \dots, a_{in}) \in \mathbb{F}^{n+1}$ . For each *i*, let  $f_i = \sum_{j=0}^n a_{ij} x_j$ . They generate an ideal

$$I = \langle f_1, \ldots, f_{n-d} \rangle \subset \mathbb{F}[x_0^{\pm 1}, \ldots, x_n^{\pm 1}].$$

Polyhedron Geometry Hyperplane Arrangements Matroids

### Hyperplane Arrangements

#### Theorem

With notations above. Fixing the torus  $\mathbb{T}^n \cong (\mathbb{F}^*)^{n+1}/\mathbb{F}^*$  in  $\mathbb{P}^n$ , we define a linear map

 $\pi: X = \mathbb{P}^d \setminus \cup \mathcal{A} \to \mathbb{T}^n, \ z \mapsto [b_0 \cdot z : \cdots : b_n \cdot z].$ 

This map defines an isomorphism between the arrangement complement X and the subvariety V(I) of  $\mathbb{T}^n$ .

Here, since I is homogeneous, V(I) is considered as a very affine variety in  $\mathbb{T}^n \cong (\mathbb{F}^*)^{n+1}/\mathbb{F}^*$ . So trop V(I) is regarded as a subset in  $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$ , where  $\mathbf{1} = (1, \ldots, 1) \in \mathbb{R}^{n+1}$ .

イロト 不得 トイヨト イヨト

Polyhedron Geometry Hyperplane Arrangements Matroids

### Hyperplane Arrangements

#### Theorem

With notations above. Fixing the torus  $\mathbb{T}^n \cong (\mathbb{F}^*)^{n+1}/\mathbb{F}^*$  in  $\mathbb{P}^n$ , we define a linear map

$$\pi: X = \mathbb{P}^d \setminus \cup \mathcal{A} \to \mathbb{T}^n, \ z \mapsto [b_0 \cdot z : \cdots : b_n \cdot z].$$

This map defines an isomorphism between the arrangement complement X and the subvariety V(I) of  $\mathbb{T}^n$ .

Here, since *I* is homogeneous, V(I) is considered as a very affine variety in  $\mathbb{T}^n \cong (\mathbb{F}^*)^{n+1}/\mathbb{F}^*$ . So trop V(I) is regarded as a subset in  $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$ , where  $\mathbf{1} = (1, \ldots, 1) \in \mathbb{R}^{n+1}$ .

イロト 不得 トイヨト イヨト

## Fan Structure in $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$

Let  $\mathcal{B} = \{b_0, \ldots, b_n\}$ . Write  $(\mathcal{L}(\mathcal{B}), \subset)$  for the poset consisting of subsets spanned by some of the  $b_i$ .

Suppose  $\{e_0, \ldots, e_n\}$  is the standard basis of  $\mathbb{R}^{n+1}$ . Consider a map  $\mathcal{P}(\mathcal{L}(\mathcal{B})) \to \mathcal{P}(\mathbb{R}^{n+1})$  defined by

 $\{V_1,\ldots,V_s\}\mapsto \mathsf{pos}(e_{\sigma(V_i)}:1\leq i\leq s)+\mathbb{R}\mathbf{1},$ 

where  $e_{\sigma(V)} = \sum_{i:b_i \in V} e_i$ .

#### Theorem

The image of the above map gives a fan in  $\mathbb{R}^{n+1}$ . We write  $\Delta(\mathcal{B})$  for the image of this fan in  $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$ .

くロ と く 同 と く ヨ と 一

# Fan Structure in $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$

Let  $\mathcal{B} = \{b_0, \ldots, b_n\}$ . Write  $(\mathcal{L}(\mathcal{B}), \subset)$  for the poset consisting of subsets spanned by some of the  $b_i$ . Suppose  $\{e_0, \ldots, e_n\}$  is the standard basis of  $\mathbb{R}^{n+1}$ . Consider a map  $\mathcal{P}(\mathcal{L}(\mathcal{B})) \to \mathcal{P}(\mathbb{R}^{n+1})$  defined by

$$\{V_1,\ldots,V_s\}\mapsto \mathsf{pos}(e_{\sigma(V_i)}:1\leq i\leq s)+\mathbb{R}\mathbf{1},$$

where  $e_{\sigma(V)} = \sum_{i:b_i \in V} e_i$ .

#### Theorem

The image of the above map gives a fan in  $\mathbb{R}^{n+1}$ . We write  $\Delta(\mathcal{B})$  for the image of this fan in  $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$ .

## Fan Structure in $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$

Let  $\mathcal{B} = \{b_0, \ldots, b_n\}$ . Write  $(\mathcal{L}(\mathcal{B}), \subset)$  for the poset consisting of subsets spanned by some of the  $b_i$ . Suppose  $\{e_0, \ldots, e_n\}$  is the standard basis of  $\mathbb{R}^{n+1}$ . Consider a map  $\mathcal{P}(\mathcal{L}(\mathcal{B})) \to \mathcal{P}(\mathbb{R}^{n+1})$  defined by

$$\{V_1,\ldots,V_s\}\mapsto \mathsf{pos}(e_{\sigma(V_i)}:1\leq i\leq s)+\mathbb{R}\mathbf{1},$$

where  $e_{\sigma(V)} = \sum_{i:b_i \in V} e_i$ .

#### Theorem

The image of the above map gives a fan in  $\mathbb{R}^{n+1}$ . We write  $\Delta(\mathcal{B})$  for the image of this fan in  $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Polyhedron Geometry Hyperplane Arrangements Matroids

### Fan structure in $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$

#### Theorem

Let I be a homogeneous linear ideal in  $\mathbb{F}[x_0^{\pm 1}, \ldots, x_n^{\pm 1}]$ . The tropical variety trop V(I) of V(I) equals the support of the fan  $\Delta(\mathcal{B})$ .

< ロ > < 同 > < 三 > < 三 >

# Matroids

### Definition

A **Matroid** is a pair M = (E, C), where E is a finite set and C is a collection of nonempty subsets of E, called **circuits** of M, such that

(1) no proper subset of a circuit is a circuit;

(2) if  $C_1, C_2$  are distinct circuits and  $e \in C_1 \cap C_2$ , then  $(C_1 \cup C_2) \setminus \{e\}$  contains a circuit.

We may identify E with  $\{0, \ldots, n\}$ , where |E| = n + 1.

## **Tropical Linear Space**

#### Definition

Let M = (E, C) be a matroid. The **tropical linear space** trop M of M is the set of vectors  $x = (x_0, \ldots, x_n) \in \mathbb{R}^{n+1}$  such that, for any circuit  $C \in C$ , the minimum of the numbers  $x_i$  is attained at least twice as i ranges over C.

Notice that trop M is invariant under tropical scalar multiplication: If  $x \in$  trop M,  $x + \lambda \mathbf{1} \in$  trop M for all  $\lambda \in \mathbb{R}$ . So we may consider trop M as a subset in  $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$ .

イロト イポト イヨト イヨト

## **Tropical Linear Space**

#### Definition

Let M = (E, C) be a matroid. The **tropical linear space** trop M of M is the set of vectors  $x = (x_0, \ldots, x_n) \in \mathbb{R}^{n+1}$  such that, for any circuit  $C \in C$ , the minimum of the numbers  $x_i$  is attained at least twice as i ranges over C.

Notice that trop M is invariant under tropical scalar multiplication: If  $x \in \text{trop } M$ ,  $x + \lambda \mathbf{1} \in \text{trop } M$  for all  $\lambda \in \mathbb{R}$ . So we may consider trop M as a subset in  $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$ .

くロ と く 同 と く ヨ と 一

### Fan structure on trop M

We represent each flat F of M by its incidence vector  $e_F = \sum_{i \in F} e_i$ . For each increasing chain of flats

 $\emptyset \subsetneq F_1 \subsetneq \cdots \subsetneq F_n \subsetneq E,$ 

we consider the polyhedral cone in  $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$  spanned by their incidence vectors

$$\mathsf{pos}(e_{F_1},\ldots,e_{F_n})+\mathbb{R}\mathbf{1}=\{\lambda\mathbf{1}+\sum_{i=1}^n\lambda_ie_{F_i}:\lambda_i\geq 0\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

### Fan structure on trop M

#### Theorem

Let M be a matroid on  $E = \{0, ..., n\}$ . The collection of cones

 $\mathsf{pos}(e_{F_1},\ldots,e_{F_n})+\mathbb{R}\mathbf{1}$ 

where  $\emptyset \subsetneq F_1 \subsetneq \cdots \subsetneq F_r \subsetneq E$  runs over all chains of flats in M, form a fan of pure dimension  $\rho(M) - 1$  in  $\mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$ . Furthermore, the support of this fan equals the tropical linear space trop M.

イロト 不得 トイヨト イヨト 二日

Basic Algebraic Geometry Tropical Geometry Matroids Hyperplane Arrangements Matroids



#### Hyperplane Arrangements:

- The arrangement complement  $\mathbb{P}^n \setminus \cup \mathcal{A}$  is a subvariety  $V(I) \subset \mathbb{T}^n$ .
- The tropical variety trop  $V(I) \subset \mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$  is a fan  $\Delta(\mathcal{B})$ .

Matroids:

• The tropical linear space trop  $M \subset \mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$  is a fan.

< ロ > < 同 > < 三 > < 三 >

Basic Algebraic Geometry Tropical Geometry Matroids Hyperplane Arrangements Matroids

# Summary

### Hyperplane Arrangements:

- The arrangement complement  $\mathbb{P}^n \setminus \cup \mathcal{A}$  is a subvariety  $V(I) \subset \mathbb{T}^n$ .
- The tropical variety trop  $V(I) \subset \mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$  is a fan  $\Delta(\mathcal{B})$ .

### Matroids:

• The tropical linear space trop  $M \subset \mathbb{R}^{n+1}/\mathbb{R}\mathbf{1}$  is a fan.

イロト イポト イラト イラト

## **Further Topics**

Other topics in tropical geometry:

- The classification of surfaces.
- Moduli spaces.
- Toric geometry.

...

- 4 同 1 4 三 1 4 三

# Thank You!

æ