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Basic algebra

Notation:

F: a field (you may consider it as R or C).
F[x1, . . . , xn]: the polynomial ring in n variables over F (for
example, R[x ], C[x , y ]).
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Basic algebraic geometry

Definition

Let F be a field. The n-dimensional affine space over F is defined
to be the set

An
F := Fn = {(x1, . . . , xn) : xi ∈ F}.

We may simply denote An
F by An.

Example

The n-dimensional real vector space An
R = Rn.

The n-dimensional complex vector space An
C = Cn.
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Basic algebraic geometry

Definition

Let F be a field. Suppose I is an ideal (subset) in F[x1, . . . , xn].
Define

V (I ) = {x ∈ An
F : f (x) = 0 for all f ∈ I}.

A subset X ⊂ An
F is called an affine variety if X = V (I ) for some

ideal I in F[x1, . . . , xn].
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Example

Example (n = 1)

Let f = a(x − x1) . . . (x − xn) ∈ R[x ], where xi ∈ R. Then

V (f ) = {x1, . . . , xn}

is a finite set.

Example (n = 2)

Let f = x − y + 1 ∈ R[x , y , z ]. Then

V (f ) = {(x , y) ∈ R2 : y = x + 1}

is a line.
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Example (n = 3)

Let f = x , g = y ∈ R[x , y ]. Then

V (f , g) = V (f ) ∩ V (g) = {(0, 0, z) : z ∈ R}

is a line.

Note that because
V (I ) =

⋂
f ∈I

V (f ),

a variety V (I ) can be considered as the intersection of some
hypersurfaces.
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Tropical Algebra

Definition

Let R be the set of real numbers. The tropical semiring is
defined to be the set R ∪∞ with tropical addition ⊕ and
tropical multiplication ⊗ defined as follows:

x ⊕ y := min{x , y}, x ⊗ y := x + y .
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Example

Consider the polynomial

F (x) = 2x3 + 2x2 + 3x + 5.

Its corresponding tropical polynomial is

f (x) = (2⊗ x⊗3)⊕ (2⊗ x⊗2)⊕ (3⊗ x)⊕ 5

= min{2 + 3x , 2 + 2x , 3 + x , 5}.

We may further write f (x) as

f (x) = 2⊗ (x ⊕ 0)⊗ (x ⊕ 1)⊗ (x ⊕ 2).
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Figure: The graph of f (x).

”Roots” of f (x): the points where the minimum is attained at
least twice.
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Valuation

Definition

Let F be a field with a valuation v : F → R ∪∞. We say v is
splitting if v : F∗ → v(F∗) has a right inverse s, where
F∗ = F\{0}.

Convention: We denote s(x) by tx .
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Residue field

Let F be a field with a splitting valuation v . Consider the ring of
elements with nonnegative valuations

R = {x ∈ F : v(x) ≥ 0}.

Notice that it is a local ring with a unique maximal ideal

m = {x ∈ F : v(x) > 0}.

Denote the residue field R/m by k . Then we have a group
homomorphism

F∗ → k∗, x 7→ xt−v(x).

We call k the residue field of F induced by v .
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Tropicalization

Definition

Let F be a field with a valuation v . Suppose F[x±1
1 , . . . , x±1

n ] is the
ring of Laurent polynomials over F. Let f =

∑
α∈Zn cαx

α be a
Laurent polynomial in F[x±1

1 , . . . , x±1
n ]. Then the tropicalization

of f is defined to be

trop f = min
α∈Zn

{v(cα) + α · x}.

The initial form of f with respect to a point x is defined to be

inx f =
∑

v(cα)+α·x=trop f (x)

cαt−v(cα)xα ∈ k[x±1
1 , . . . , x±1

n ].
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Initial Ideal

Definition

Let F be a field with a valuation v , and k be the residue field of F
induced by v . Suppose I is an ideal in F[x±1

1 , . . . , x±1
n ]. The initial

ideal of I with respect to a point x is defined to be

inx(I ) = ⟨inx f : f ∈ I ⟩ ⊂ k[x±1
1 , . . . , x±1

n ].
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Tropical Hypersurface

Definition

Let F be a field with a valuation v . Suppose f ∈ F[x±1
1 , . . . , x±1

n ].
Then define

V (trop f ) :=

{
x ∈ Rn : the minimum in trop f (x)

is attained at least twice

}
.

A tropical hypersurface is defined to be a set of the form

tropV (f ) := V (trop f )

for some f ∈ F[x±1
1 , . . . , x±1

n ].
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Example

Let f = x − y + 1 ∈ F[x±1, y±1], where F is a field with a
valuation. Then

trop f (x , y) = min{x , y , 0}.

So

tropV (f ) = {x = y ≤ 0} ∪ {x = 0 ≤ y} ∪ {y = 0 ≤ x}.
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Figure: The graph of trop f .
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Tropical Varieties

Definition

Let I be an ideal in F[x±1
1 , . . . , x±1

n ], and X = V (I ) be the
corresponding very affine variety in the algebraic torus Tn

F = (F∗)n.
The tropicalization tropX of X is defined to be

tropX =
⋂
f ∈I

tropV (f ) ⊂ Rn.

A tropical variety in Rn is a subset of the form tropX for some
very affine variety X in the algebraic torus Tn.
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Fundamental Theorem of Tropical Algebraic Geometry

Theorem (Fundamental Theorem of Tropical Algebraic Geometry)

Let F be an algebraically closed field with a nontrivial valuation v .
Suppose I is an ideal in the ring of Laurent polynomials
F[x±1

1 , . . . , x±1
n ]. Then the following subsets of Rn coincide:

(1) the tropical variety tropV (I );

(2) the set {x ∈ Rn : inx(I ) ̸= ⟨1⟩};
(3) the closure of {(v(x1), . . . , v(xn)) : (x1, . . . , xn) ∈ V (I ))} in

Rn.
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Example

We continue with our previous example of the tropical variety
trop f , where f = x − y +1. Then V (f ) = {(x , x +1) : x ̸= 0, 1}.If
the valuation v is nontrivial, we have

(v(x), v(y)) = (v(x), v(x + 1))

=


(v(x), 0), if v(x) > 0;

(v(x), v(x)), if v(x) < 0;

(0, v(x + 1)), if v(x) = 0, v(x + 1) > 0;

(0, 0), otherwise.
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As x runs over F\{0, 1}, the closure of such a set coincides with
our previous figure of trop f :

Figure: The graph of trop f .
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Summary

Algebraic geometry Tropical geometry
Polynomial f Tropicalization trop f

Initial form inx f

Ideal I Initial ideal inx(I )

Variety V(I) Tropical variety tropV (I )

Table: Algebraic geometry and tropical geometry.

Changqian Li Introduction to Tropical Geometry and Its Application in Matroids



Basic Algebraic Geometry
Tropical Geometry

Matroids

Polyhedron Geometry
Hyperplane Arrangements
Matroids

Outline

1 Basic Algebraic Geometry

2 Tropical Geometry

3 Matroids

Changqian Li Introduction to Tropical Geometry and Its Application in Matroids



Basic Algebraic Geometry
Tropical Geometry

Matroids

Polyhedron Geometry
Hyperplane Arrangements
Matroids

Polyhedron Geometry

Definition

A polyhedral cone C in Rn is a positive hull of a finite subset:

C = pos(v1, . . . , vr ) := {
r∑

i=1

λivi ∈ Rn : λi ∈ R≥0 for all i}.

A fan is a collection Σ of polyhedral cones satisfying the following
two conditions:

(1) for any P ∈ Σ, each face of P lies in Σ;

(2) for any two elements A,B ∈ Σ, if A ∩ B ̸= ∅, A ∩ B is a face
of both.
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Hyperplane Arrangements

Let A = {Hi : 0 ≤ i ≤ n} be an arrangement of n + 1 hyperplanes
with empty intersection in Pd . We are interested in the
complement X = Pd\ ∪ A, where ∪A = ∪n

i=0Hi .
For each i , write bi ∈ Fd+1 for a normal vector of the complement
Hi . Set B =

[
b0 . . . bn

]
. Let {a1, . . . , an−d} be a basis of kerB,

where ai = (ai0, . . . , ain) ∈ Fn+1.
For each i , let fi =

∑n
j=0 aijxj . They generate an ideal

I = ⟨f1, . . . , fn−d⟩ ⊂ F[x±1
0 , . . . , x±1

n ].
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Theorem

With notations above. Fixing the torus Tn ∼= (F∗)n+1/F∗ in Pn, we
define a linear map

π : X = Pd\ ∪ A → Tn, z 7→ [b0 · z : · · · : bn · z ].

This map defines an isomorphism between the arrangement
complement X and the subvariety V (I ) of Tn.

Here, since I is homogeneous, V (I ) is considered as a very affine
variety in Tn ∼= (F∗)n+1/F∗. So tropV (I ) is regarded as a subset
in Rn+1/R1, where 1 = (1, . . . , 1) ∈ Rn+1.
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Fan Structure in Rn+1/R1

Let B = {b0, . . . , bn}. Write (L(B),⊂) for the poset consisting of
subsets spanned by some of the bi .
Suppose {e0, . . . , en} is the standard basis of Rn+1. Consider a
map P(L(B)) → P(Rn+1) defined by

{V1, . . . ,Vs} 7→ pos(eσ(Vi ) : 1 ≤ i ≤ s) + R1,

where eσ(V ) =
∑

i :bi∈V ei .

Theorem

The image of the above map gives a fan in Rn+1. We write ∆(B)
for the image of this fan in Rn+1/R1.
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Fan structure in Rn+1/R1

Theorem

Let I be a homogeneous linear ideal in F[x±1
0 , . . . , x±1

n ]. The
tropical variety tropV (I ) of V (I ) equals the support of the fan
∆(B).
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Matroids

Definition

A Matroid is a pair M = (E , C), where E is a finite set and C is a
collection of nonempty subsets of E , called circuits of M, such
that

(1) no proper subset of a circuit is a circuit;

(2) if C1,C2 are distinct circuits and e ∈ C1 ∩ C2, then
(C1 ∪ C2)\{e} contains a circuit.

We may identify E with {0, . . . , n}, where |E | = n + 1.
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Tropical Linear Space

Definition

Let M = (E , C) be a matroid. The tropical linear space tropM
of M is the set of vectors x = (x0, . . . , xn) ∈ Rn+1 such that, for
any circuit C ∈ C, the minimum of the numbers xi is attained at
least twice as i ranges over C .

Notice that tropM is invariant under tropical scalar multiplication:
If x ∈ tropM, x + λ1 ∈ tropM for all λ ∈ R. So we may consider
tropM as a subset in Rn+1/R1.
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Fan structure on tropM

We represent each flat F of M by its incidence vector
eF =

∑
i∈F ei . For each increasing chain of flats

∅ ⊊ F1 ⊊ · · · ⊊ Fn ⊊ E ,

we consider the polyhedral cone in Rn+1/R1 spanned by their
incidence vectors

pos(eF1 , . . . , eFn) + R1 = {λ1+
n∑

i=1

λieFi
: λi ≥ 0}.
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Fan structure on tropM

Theorem

Let M be a matroid on E = {0, . . . , n}. The collection of cones

pos(eF1 , . . . , eFn) + R1

where ∅ ⊊ F1 ⊊ · · · ⊊ Fr ⊊ E runs over all chains of flats in M,
form a fan of pure dimension ρ(M)− 1 in Rn+1/R1.
Furthermore, the support of this fan equals the tropical linear
space tropM.
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Summary

Hyperplane Arrangements:

The arrangement complement Pn\ ∪ A is a subvariety
V (I ) ⊂ Tn.

The tropical variety tropV (I ) ⊂ Rn+1/R1 is a fan ∆(B).
Matroids:

The tropical linear space tropM ⊂ Rn+1/R1 is a fan.
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Further Topics

Other topics in tropical geometry:

The classification of surfaces.

Moduli spaces.

Toric geometry.

...
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Thank You!
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